题目列表(包括答案和解析)
指出下列推理的两个步骤分别遵循哪种推理规则?
如图,因为四边形ABCD是平行四边形.
所以AB=CD,BC=AD.
又因为△ABC和△CDA的三边对应相等.
所以△ABC≌△CDA.
指出下列推理的两个步骤分别遵循哪种推理规则?
如下图,因为四边形ABCD是平行四边形,所以AB=CD,BC=AD.
又因为△ABC和△CDA的三边对应相等,所以△ABC≌△CDA.
如图所示,圆柱的高为2,底面半径为
,AE、DF是圆柱的两条母线,过
作圆柱的截面交下底面于
.![]()
(1)求证:
;
(2)若四边形ABCD是正方形,求证
;
(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。
![]()
【解析】第一问中,利用由圆柱的性质知:AD平行平面BCFE
又过
作圆柱的截面交下底面于
.
∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF
AD∥EF
第二问中,由线面垂直得到线线垂直。四边形ABCD是正方形![]()
又![]()
BC、AE是平面ABE内两条相交直线
![]()
![]()
第三问中,设正方形ABCD的边长为x,则在![]()
在![]()
由(2)可知:
为二面角A-BC-E的平面角,所以![]()
证明:(1)由圆柱的性质知:AD平行平面BCFE
又过
作圆柱的截面交下底面于
.
∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF
AD∥EF![]()
(2)
四边形ABCD是正方形![]()
又![]()
BC、AE是平面ABE内两条相交直线
![]()
![]()
(3)设正方形ABCD的边长为x,则在![]()
在![]()
由(2)可知:
为二面角A-BC-E的平面角,所以![]()
如图,在四棱锥
中,
⊥底面
,底面
为正方形,
,
,
分别是
,
的中点.
(I)求证:
平面
;
(II)求证:
;
(III)设PD=AD=a, 求三棱锥B-EFC的体积.
![]()
【解析】第一问利用线面平行的判定定理,
,得到![]()
第二问中,利用![]()
,所以![]()
又因为
,
,从而得![]()
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明:![]()
分别是
的中点, ![]()
,
. …4分
(Ⅱ)证明:
四边形
为正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,
∴![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com