所以椭圆C的标准方程为 ----6分 (2)证明:易求出椭圆C的右焦点F(2.0). ----7分 查看更多

 

题目列表(包括答案和解析)

已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。

第一问中,可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

第二问中,

假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得

代入1,2式中得到范围。

(Ⅰ) 可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

 (Ⅱ) 假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是

 

查看答案和解析>>

(2008•中山市模拟)已知椭圆C的焦点与双曲线x2-
y2
3
=1
的焦点相同,且离心率为
1
2
,则椭圆C的标准方程为
x2
16
+
y2
12
=1
x2
16
+
y2
12
=1

查看答案和解析>>

已知椭圆C的标准方程为
x2
a2
+
y2
b2
=1(a>b>0)
,且c=
a2-b2
,A点坐标(0,b),B点坐标(0,-b),F点坐标(c,0),T点坐标(3c,0),若直线AT与直线BF的交点在椭圆上,则椭圆的离心率为
3
3
3
3

查看答案和解析>>

已知直线(1+4k)x-(2-3k)y-(3+12k)=0(k∈R)所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.则椭圆C的标准方程为
x2
25
+
y2
16
=1
x2
25
+
y2
16
=1

查看答案和解析>>

(2013•婺城区模拟)已知椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)的右焦点为F(3,0),且点(-3,
3
2
2
)在椭圆C上,则椭圆C的标准方程为
x2
18
+
y2
9
=1
x2
18
+
y2
9
=1

查看答案和解析>>


同步练习册答案