所以或-5(舍) -----------12分 查看更多

 

题目列表(包括答案和解析)

设函数

(I)求的单调区间;

(II)当0<a<2时,求函数在区间上的最小值.

【解析】第一问定义域为真数大于零,得到.                            

,则,所以,得到结论。

第二问中, ().

.                          

因为0<a<2,所以.令 可得

对参数讨论的得到最值。

所以函数上为减函数,在上为增函数.

(I)定义域为.           ………………………1分

.                            

,则,所以.  ……………………3分          

因为定义域为,所以.                            

,则,所以

因为定义域为,所以.          ………………………5分

所以函数的单调递增区间为

单调递减区间为.                         ………………………7分

(II) ().

.                          

因为0<a<2,所以.令 可得.…………9分

所以函数上为减函数,在上为增函数.

①当,即时,            

在区间上,上为减函数,在上为增函数.

所以.         ………………………10分  

②当,即时,在区间上为减函数.

所以.               

综上所述,当时,

时,

 

查看答案和解析>>

定义在R上的函数f(x)即是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]
时,f(x)=sinx,则f(x)=
1
2
的解为(  )

查看答案和解析>>

已知△ABC中,
CB
=
a
CA
=
b
a
-
b
<0
S△ABC=
15
4
,|
a
|=3,|
b
|=5,则
a
b
的夹角为(  )

查看答案和解析>>

若平面向量
a
b
c
两两所成的角相等,|
a
|=|
b
|=1,|
c
|=3,则|
a
+
b
+
c
|=(  )

查看答案和解析>>

已知函数f(x)=
x2-1,x≤0
3x,x>0
,若f(x)=15,则x=
-4或5
-4或5

查看答案和解析>>


同步练习册答案