.直线的方程:.令得.由已知可得即化简得解之得 . 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=8,直线y=
12
x+3
与x轴、y轴分别交于E和F,D是CB的中点,G是线段EF(包括端点)上的一点,且GH⊥AB.
(1)由已知可得,点D的坐标为
 

(2)设点G的横坐标为x,四边形GHBD的面积为S,求S关于x的函数表达式,并注明x的取值范围;
(3)①若点G在直线EF上移动,是否存在这样的点G,使D、C、G三点构成的三角形为等腰三角形?若存在,请求出点G的坐标,若不存在,请说明理由;
②若点G在线段EF上移动,求当以GD为直径的⊙M与AB相切时,四边形GH精英家教网BD的面积.

查看答案和解析>>

根据一元二次方程根的定义,解答下列问题.
一个三角形两边长分别为3cm和7cm,第三边长为a cm,且整数a满足a2-10a+21=0,求三角形的周长.
解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)
当a=5时,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
同理可知a=6,a=8,a=9都不是方程的根.
∴a=7是方程的根.(第二步)
∴△ABC的周长是3+7+7=17(cm).
上述过程中,第一步是根据
三角形任意两边之和大于第三边,任意两边之差小于第三边
三角形任意两边之和大于第三边,任意两边之差小于第三边
,第二步应用了
分类讨论
分类讨论
数学思想,确定a的值的大小是根据
方程根的定义
方程根的定义

查看答案和解析>>

在平面直角坐标系xOy中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于F.
(1)求OA,OC的长; 
(2)求证:DF为⊙O′的切线;
(3)由已知可得,△AOE是等腰三角形.那么在直线BC上是否存在除点E以外的点P,使△AOP也是等腰三角形?如果存在,请你证明点P与⊙O′的位置关系,如果不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于F.

(1) 求OA,OC的长;

(2) 求证:DF为⊙O′的切线;

(3)由已知可得,△AOE是等腰三角形.那么在直线BC上是否存在除点E以外的点P,使△AOP也是等腰三角形?如果存在,请你证明点P与⊙O′的位置关系,如果不存在,请说明理由.

 

查看答案和解析>>

在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于F.

(1) 求OA,OC的长;
(2) 求证:DF为⊙O′的切线;
(3)由已知可得,△AOE是等腰三角形.那么在直线BC上是否存在除点E以外的点P,使△AOP也是等腰三角形?如果存在,请你证明点P与⊙O′的位置关系,如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案