此时.即最小值为. 查看更多

 

题目列表(包括答案和解析)

如图,一张边长为20cm正方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为Vcm3,请回答下列问题:
(1)若用含有x的代数式表示V,则V=
x(20-2x)2
x(20-2x)2

(2)根据(1)中结果,填写下表:
x(cm) 1 2 3 4 5 6 7
V(cm3 324 512 500 384 252
(3)观察(2)中表格,容积V的值是否随x值的增大而增大?此时当x取什么整数值时,容积V的值最大?
(4)课后小英同学继续对这个问题作了以下探究:
当x=3.2cm时,V=591.872cm3;当x=3.3cm时,V=592.548cm3
当x=3.4cm时,V=592.416cm3;当x=3.5cm时,V=591.5cm3
小英同学发现x的取值一定介于3.3cm~3.4cm之间,估计x的取值还能更精确些,小英再计算x=3.3cm,3.33cm,3.333cm,3.3333cm…时,发现容积还在逐渐增大.现请你也观察(4)中数据变化,能否推测x可以取到哪一个定值,容积V的值最大?(直接写出即可)

查看答案和解析>>

如图,一张边长为20cm正方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为Vcm3,请回答下列问题:
(1)若用含有x的代数式表示V,则V=______.
(2)根据(1)中结果,填写下表:
x(cm)1234567
V(cm3324512500384252
(3)观察(2)中表格,容积V的值是否随x值的增大而增大?此时当x取什么整数值时,容积V的值最大?
(4)课后小英同学继续对这个问题作了以下探究:
当x=3.2cm时,V=591.872cm3;当x=3.3cm时,V=592.548cm3
当x=3.4cm时,V=592.416cm3;当x=3.5cm时,V=591.5cm3
小英同学发现x的取值一定介于3.3cm~3.4cm之间,估计x的取值还能更精确些,小英再计算x=3.3cm,3.33cm,3.333cm,3.3333cm…时,发现容积还在逐渐增大.现请你也观察(4)中数据变化,能否推测x可以取到哪一个定值,容积V的值最大?(直接写出即可)

查看答案和解析>>

为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则 则问题即转化成求AC+CE的最小值.

(1)我们知道当A、C、E在同一直线上时, AC+CE的值最小,于是可求得的最小值等于         ,此时       ;
(2)请你根据上述的方法和结论,试构图求出代数式的最小值.

查看答案和解析>>

为了探索代数式的最小值,

小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则 则问题即转化成求AC+CE的最小值.

(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于       ,此时        ;

(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想?

(选填:函数思想,分类讨论思想、类比思想、数形结合思想)

(3)请你根据上述的方法和结论,试构图求出代数式的最小值.

 

查看答案和解析>>

为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则 则问题即转化成求AC+CE的最小值.

(1)我们知道当A、C、E在同一直线上时, AC+CE的值最小,于是可求得的最小值等于          ,此时        ;

 

(2)请你根据上述的方法和结论,试构图求出代数式的最小值.

 

查看答案和解析>>


同步练习册答案