当时..即.方程有两个不相等的实数根. 查看更多

 

题目列表(包括答案和解析)

已知关于的方程有两个不相等的实数根

(1)k的取值范围;

(2)是否存在实数k,使方程的两实数根互为相反数?

解:(1)根据题意,得

所以时,方程有两个不相等的实数根.

(2)存在,如果方程的两个实数根互为相反数,则于是解得

检验,知时,方程的两实数根互为相反数.

当你读了上面的解答过程后,请判断是否有错误.如果有,请指出错误之处,并直接写出正确答案.

查看答案和解析>>

解二元一次方程组的基本思路是
消元
消元
,即变“
二元
二元
”为“
一元
一元
”,其方法有两种是
代人消元法
代人消元法
加减消元法
加减消元法
.当方程组中某个方程的系数比较简单(最好系数为1)时用
代人消元法
代人消元法
为宜;当两个方程的某一个未知数的系数的绝对值相等时,用
加减消元法
加减消元法
为宜;若不具备上述条件,可以通过适当变形,用
加减消元法
加减消元法
求解.

查看答案和解析>>

已知关于的方程

1.若方程有两个不相等的实数根,求的取值范围;

2. 若正整数满足,设二次函数的图象与 轴交于两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象恰好有三个公共点时,求出的值(只需要求出两个满足题意的k值即可).

 

查看答案和解析>>

已知关于的方程

1.若方程有两个不相等的实数根,求的取值范围;

2. 若正整数满足,设二次函数的图象与 轴交于两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象恰好有三个公共点时,求出的值(只需要求出两个满足题意的k值即可).

 

查看答案和解析>>

解二元一次方程组的基本思路是________,即变“________”为“________”,其方法有两种是________和________.当方程组中某个方程的系数比较简单(最好系数为1)时用________为宜;当两个方程的某一个未知数的系数的绝对值相等时,用________为宜;若不具备上述条件,可以通过适当变形,用________求解.

查看答案和解析>>


同步练习册答案