故 又 BD∩BA1=B 所以 B1C⊥面A1BD. 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

精英家教网已知长方体ABCD-A1B1C1D1中,棱AB=BC=3,BB1=3
2
,连B1C,过点B作B1C的垂线,垂足为E且交CC1于F.
(Ⅰ)求证:A1C⊥BF;
(Ⅱ)求证:AC1∥平面BDF;
(Ⅲ)求二面角F-BD-C的大小.

查看答案和解析>>

精英家教网如图在△ABC中,设
AB
=
a
AC
=
b
,又
BD
=2
DC
|
a
|=2,|
b
|=1,?
a
b
>=
π
3
,(?
a
.
b
是表示向量
a
b
的夹角)
(1)用
a
b
表示
AD

(2)若点E是AC边的中点,直线BE交AD于F点,求
AF
AB

查看答案和解析>>

已知正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F.
(1)求异面直线BA1和D1B1所成的角的余弦值;
(2)证明A1C⊥平面BED;
(3)求平面BDA1与平面BDE所成的角的余弦值.

查看答案和解析>>

定义在R上的偶函数f(x)满足xf′(x)<0,又a=f(log
1
3
2)
,b=f(ln2),c=f(5
1
2
)
,则(  )

查看答案和解析>>


同步练习册答案