(2009昆明一中第三次模拟)如图1.在直角梯形中...为的中点.分别为的中点.将沿折起.使点在平面上的射影为点.如图2. 查看更多

 

题目列表(包括答案和解析)

(2011•福建模拟)如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=
12
CD=1

现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.
(1)求证:AM∥平面BEC;
(2)求证:BC⊥平面BDE;
(3)求三棱锥D-BCE的体积.

查看答案和解析>>

为了求函数y=x2,函数x=1,x轴围成的曲边三角形的面积S,古人想出了两种方案求其近似解(如图):第一次将区间[0,1]二等分,求出阴影部分矩形面积,记为S2;第二次将区间[0,1]三等分,求出阴影部分矩形面积,记为S3;第三次将区间[0,1]四等分,求出S4…依此类推,记图1中Sn=an,图2中Sn=bn,其中n≥2.
(1)求a2,a3,a4
(2)求an的通项公式,并证明an
1
3

(3)求bn的通项公式,类比第②步,猜想bn的取值范围.并由此推出S的值(只需直接写出bn的范围与S的值,无须证明).
参考公式:12+22+32+…+(n-1)2+n2=
1
6
n(n+1)(2n+1)

查看答案和解析>>

(2010•吉安二模)甲袋中装有若干质地、大小相同的黑球、白球,乙袋中装有若干个质地、大小相同的黑球、红球.某人有放回地从两袋中每次取一球,甲袋中每取到一黑球得2分,乙袋中每取到一黑球得1分,取得其它球得零分,规定他最多取3次,如果前两次得分之和超过2分即停止取球,否则取第三次,取球方式:先在甲袋中取一球,以后均在乙袋中取球,此人在乙袋中取到一个黑球的概率为0.8,用ξ表示他取球结束后的总分,已知P(ξ=1)=0.24
(1)求随机变量ξ的数学期望;
(2)试比较此人选择每次都在乙袋中取球得分超过1分与选择上述方式取球得分超过1 分的概率的大小.

查看答案和解析>>

袋中有大小相同的4个红球和6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球.

(1)求第三次取出红球的概率;

(2)在已知前两次取出的是白球的前提下,第三次取出红球的概率.

查看答案和解析>>

.(满分12分)某射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150米处,这时命中记2分,且停止射击;若第二次仍未命中还可以进行第三次射击,但此时目标已在200米处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分。已知射手在100米处击中目标的概率为,他的命中率与目标距离的平方成反比,且各次射击都是独立的。

(1)求这名射手在射击比赛中命中目标的概率;

(2)求这名射手在比赛中得分的数学期望。

 

查看答案和解析>>


同步练习册答案