AD⊥B1D------4分(2)解:连接DE.∵AA1=AB ∴四边形A1ABB1是正方形.∴E是A1B的中点. 查看更多

 

题目列表(包括答案和解析)

已知

(1)求函数上的最小值

(2)对一切的恒成立,求实数a的取值范围

(3)证明对一切,都有成立

【解析】第一问中利用

时,单调递减,在单调递增,当,即时,

第二问中,,则

单调递增,单调递减,,因为对一切恒成立, 

第三问中问题等价于证明

由(1)可知的最小值为,当且仅当x=时取得

,则,易得。当且仅当x=1时取得.从而对一切,都有成立

解:(1)时,单调递减,在单调递增,当,即时,

                 …………4分

(2),则

单调递增,单调递减,,因为对一切恒成立,                                             …………9分

(3)问题等价于证明

由(1)可知的最小值为,当且仅当x=时取得

,则,易得。当且仅当x=1时取得.从而对一切,都有成立

 

查看答案和解析>>

(本小题8分)书架上有10本不同的书,其中语文书4本,数学书3本,英语书3本,现从中取出3本书.求:

( 1 )3本书中至少有1本是数学书的概率;

( 2 ) 3本书不全是同科目书的概率.

    解:(1)3本书中至少有1本是数学书的概率为

               (4分)

 或解                      (4分)

   (2)事件“3本书不全是同科目书”的对立事件是事件“3本书是同科目书”,

    而事件“3本书是同科目书”的概率为    (7分

   ∴3本书不全是同科目书的概率              (8分)

 

查看答案和解析>>

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

如图,,…,,…是曲线上的点,,…,,…是轴正半轴上的点,且,…,,… 均为斜边在轴上的等腰直角三角形(为坐标原点).

(1)写出之间的等量关系,以及之间的等量关系;

(2)求证:);

(3)设,对所有恒成立,求实数的取值范围.

【解析】第一问利用有得到

第二问证明:①当时,可求得,命题成立;②假设当时,命题成立,即有则当时,由归纳假设及

第三问 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

解:(1)依题意,有,………………4分

(2)证明:①当时,可求得,命题成立; ……………2分

②假设当时,命题成立,即有,……………………1分

则当时,由归纳假设及

解得不合题意,舍去)

即当时,命题成立.  …………………………………………4分

综上所述,对所有.    ……………………………1分

(3) 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

.……………2分

由题意,有. 所以,

 

查看答案和解析>>

已知数列中,,数列中,,且点在直线上。

(1)求数列的通项公式;

(2)求数列的前项和

(3)若,求数列的前项和

【解析】第一问中利用数列的递推关系式

,因此得到数列的通项公式;

第二问中, 即为:

即数列是以的等差数列

得到其前n项和。

第三问中, 又   

,利用错位相减法得到。

解:(1)

  即数列是以为首项,2为公比的等比数列

                  ……4分

(2) 即为:

即数列是以的等差数列

         ……8分

(3) 又   

   ①         ②

①-  ②得到

  

 

查看答案和解析>>


同步练习册答案