则.解之.即.-------6分(2)设面EBC∩SD=F.取AD中点N.连SN.设SN∩EF=Q.∵AD∥BC.∴AD∥面BEFC.而面SAD∩面BEFC=EF.∴AD∥EF. 查看更多

 

题目列表(包括答案和解析)

,椭圆方程为,抛物线方程为。如图所示,过点

轴的平行线,与抛物线在第一象限的交点为G。已知抛物线在点

G的切线经过椭圆的右焦点F1。

(1)求满足条件的椭圆方程和抛物线方程;     (6分)

(2)设A、B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得

△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具

体求出这些点的坐标)。(8分)

查看答案和解析>>

(  文科生做)设数列{an}的前n项为Sn,点均在函数y = 3x-2的图象上.

   (1)求数列{an}的通项公式。(  6分  )

  

(2)设,Tn为数列{bn}的前n项和,求使得对所有都成立的最小正整数m.(6分  )

查看答案和解析>>

,椭圆方程为,抛物线方程为。如图所示,过点

轴的平行线,与抛物线在第一象限的交点为G。已知抛物线在点

G的切线经过椭圆的右焦点F1。

(1)求满足条件的椭圆方程和抛物线方程;     (6分)

(2)设A、B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得

△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具

体求出这些点的坐标)。(8分)

查看答案和解析>>

已知函数f(x)=为常数。

(I)当=1时,求f(x)的单调区间;

(II)若函数f(x)在区间[1,2]上为单调函数,求的取值范围。

【解析】本试题主要考查了导数在研究函数中的运用。第一问中,利用当a=1时,f(x)=,则f(x)的定义域是然后求导,,得到由,得0<x<1;由,得x>1;得到单调区间。第二问函数f(x)在区间[1,2]上为单调函数,则在区间[1,2]上恒成立,即即,或在区间[1,2]上恒成立,解得a的范围。

(1)当a=1时,f(x)=,则f(x)的定义域是

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函数,在(1,上是减函数。……………6分

(2)。若函数f(x)在区间[1,2]上为单调函数,

在区间[1,2]上恒成立。∴,或在区间[1,2]上恒成立。即,或在区间[1,2]上恒成立。

又h(x)=在区间[1,2]上是增函数。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或

 

查看答案和解析>>

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>


同步练习册答案