题目列表(包括答案和解析)
在△ABC中,角A、B、C的对边分别为a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),满足
=![]()
(Ⅰ)求角B的大小;
(Ⅱ)设
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.
【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用
第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即
,又由余弦定理
=2acosB,所以cosB=
,B=![]()
第二问中,m=(sin(C+
),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+
-
=-
+2ksinA+
=-
+
(k>1).
而0<A<
,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-
=3,得k=
.
已知△
的内角
所对的边分别为
且
.
(1)
若
, 求
的值;
(2)
若△
的面积
求
的值.
【解析】本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力。第一问中
,得到正弦值
,再结合正弦定理可知,
,得到
(2)中
即
所以c=5,再利用余弦定理
,得到b的值。
解: (1)∵
, 且
, ∴
. 由正弦定理得
, ∴
.
(2)∵
∴
. ∴c=5
由余弦定理得
,
∴ ![]()
在
中,
,分别是角
所对边的长,
,且![]()
(1)求
的面积;
(2)若
,求角C.
【解析】第一问中,由
又∵
∴
∴
的面积为![]()
第二问中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C为内角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面积为
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C为内角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
如图
是单位圆
上的点,
分别是圆
与
轴的两交点,
为正三角形.
![]()
(1)若
点坐标为
,求
的值;
(2)若
,四边形
的周长为
,试将
表示成
的函数,并求出
的最大值.
【解析】第一问利用设
∵ A点坐标为
∴
,
(2)中 由条件知 AB=1,CD=2 ,
在
中,由余弦定理得 ![]()
∴ ![]()
∵
∴
,
∴ 当
时,即
当
时 , y有最大值5. .
已知向量
=(
),
=(
,![]()
),其中(
).函数
,其图象的一条对称轴为
.
(I)求函数
的表达式及单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,S为其面积,若
=1,b=l,S△ABC=
,求a的值.
【解析】第一问利用向量的数量积公式表示出![]()
,然后利用
得到
,从而得打解析式。第二问中,利用第一问的结论,表示出A,结合正弦面积公式和余弦定理求解a的值。
解:因为
![]()
由余弦定理得
,……11分故![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com