求出曲线作用下变换得到的曲线方程 (II)选修4―4:坐标系与参数方程 查看更多

 

题目列表(包括答案和解析)

 【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.

A.选修4-1:几何证明选讲

 

如图,是⊙O的直径,弦的延长线相交于点E,EF垂直BA的延长线于点F.求证:

(1)

(2)

 

 

 

 

 

B.选修4-2:矩阵与变换

 

求曲线在矩阵MN对应的变换作用下得到的曲线方程,其中

 

C.选修4-4:坐标系与参数方程

 

以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度.已知直线l的极坐标方程为,曲线C的参数方程为,又直线l与曲线C交于A,B两点,求线段AB的长.

 

D.选修4-5:不等式选讲

 

若存在实数使成立,求常数的取值范围.

 

 

查看答案和解析>>

精英家教网本题有(1),(2),(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑.
(1)选修4-2:矩阵与变换
如图所示:△OAB在伸缩变换M作用下变为△OA1B1
(i)求矩阵M的特征值及相应的特征向量;
(ii)求逆矩阵M-1以及(M-120
(2)选修4-4:坐标系与参数方程.
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
(θ为参数),曲线C2的参数方程为
x=2t
y=t+1
(t为参数)
(i)若将曲线C1与C2上各点的横坐标都缩短为原来的一半,分别得到曲线C1和C2,求出曲线C1和C2的普通方程;
(ii)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求证:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求实数m的取值范围.

查看答案和解析>>

【选做题】在A,B,C,D四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1 几何证明选讲
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.求证:△PDF∽△POC.
B.选修4-2 矩阵与变换
若点A(2,2)在矩阵M=
cosα-sinα
sinαcosα
对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵.
C.选修4-4 坐标系与参数方程
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,
曲线C1ρcos(θ+
π
4
)=2
2
与曲线C2
x=4t2
y=4t
(t∈R)交于A、B两点.求证:OA⊥OB.
D.选修4-5 不等式选讲
已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分。

1―5 DCCBD    6―10 ACBBB

二、填空题:本大题共4小题,每小题4分,共16分。

11.1200    12.―3    13.e    14.2    15.16

三、解答题:本大题共6小题,共80分。解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分13分)

解:(I)由已知

   (II)

 

   (I)证明:(1)连接CD1

∵四棱柱ABCD―A1B1C1D1中,底面ABCD是菱形

∴A1D1//AD,AD//BC,A1D1=AD,AD=BC;

∴A1D1//BC,A1D1=BC,

∴四边形A1BCD1为平行四边形;∴A1B//D1C………3分

∵点E、F分别是棱CC1、C1D1的中点;∴EF//D1C

又∴EF//A1B

又∵A1B平面A1DB,EF面A1DB;

∴EF⊥平面A1BD  ………………6分

   (II)连结AC交BD于点G,连接A1G,EG

∵四棱柱ABCD―A1B1C1D1中,A1A⊥底面ABCD,

底面ABCD是菱形

∴AA1⊥AB,AA1⊥AD,EC⊥BC,EC⊥DC,

AD=AB,BC=CD

∵底面ABCD是菱形,∴点G为BD中点,

∴A1G⊥BD,EG⊥BD

∴∠A1GE为直二面角A1―BD―E的平面角,

∴∠A1GE=90°………………3分

在棱形ABCD中,∠DAB=60°,AB=2,

∴∠ABC=120°,

∴AC=

∴AG=GC=  ………………10分

在面ACC1A1中,△AGA1,△GCE为直角三角形

∵∠A1GE=90°∴∠EGC+∠A1GA=90°,∴∠EGC=∠AA1G

∴Rt△A1AG∽Rt△ECG ………………12分

解法二:

   (I)证明:取AB的中点G,连接GD

∵底面ABCD是菱形,∠DAB=60°,AB=2

∴△ABD是正三角形,∴DG⊥AB,DG=

又∵AB//CD,∴DG⊥DC   …………2分

∵四棱柱ABCD―A1B1C1D1为直四棱柱,AA1//DD1

A1A⊥底面ABCD,∴DD1⊥底面ABCD

以D为坐标原点,射线DG为x轴的正半轴,射线DC为y轴的正半轴,

建立如图所示空间直角坐标系D―xyz.

18.解:(I)掷一枚硬币三次,列出所有可能情况共8种:

   (上上上),(上上下),(上下上),(上下下),(下上上),(下上下),(下下上),(下下下);

    其中甲得2分、乙得1分的有3种,故所求概率  …………3分

   (II)在题设条件下,至多还要2局,情形一:在第四局,硬币正面朝上,则甲积3分、乙积1分,甲获胜,概率为1/2;情形二:在第四局,硬币正面朝下,第五局硬币正面朝上,则甲积3分、乙积2分,甲获胜,概率为1/4。由加法公式,甲获胜的概率为1/2+1/4=3/4。   ………………8分

   (III)据题意,ξ的取值为3、4、5,

    且   ………………11分

   

    其分布列如下:

ξ

3

4

5

P

1/4

3/8

3/8

       ………………13分

19.解:(I)∵F1,F2三等份BD, …………1分

       ………………3分

   (II)由(I)知为BF2的中点,

   

   (III)依题意直线AC的斜率存在,

 

    同理可求

   

   (III)法二:

   

20.(I)解:

   (II)切线l与曲线有且只有一个公共点等价

的唯一解;  ………………7分

 

 

x

(―1,0)

0

+

0

0

+

极大值0

极小值

x

0

+

0

0

+

极大值

极小值0

   (III)

21.(I)由已知BA=  ………………2分

任取曲线

则有=,即有  ………………5分

  ………………6分

   …………①   与   ………………②

比较①②得

   (II)设圆C上的任意一点的极坐标,过OC的直径的另一端点为B,

边PO,PB则在直角三角形OPB中, …………5分

(写不扣分)

从而有   ………………7分

   (III)证:为定值,

利用柯西不等式得到

………5分