函数f(x)=()|cosx|在[-π.π]上的单调减区间为 . 查看更多

 

题目列表(包括答案和解析)

函数f(x)=()cosx在[-ππ]上的单调减区间为_________. 

查看答案和解析>>

函数f(x)=()cosx在[-ππ]上的单调减区间为_________. 

查看答案和解析>>

难点磁场

证明:若x>0,则α+β6ec8aac122bd4f6eαβ为锐角,∴0<6ec8aac122bd4f6eαβ6ec8aac122bd4f6e;0<6ec8aac122bd4f6eβ6ec8aac122bd4f6e,∴0<sin(6ec8aac122bd4f6eα)<sinβ.0<sin(6ec8aac122bd4f6eβ)<sinα,∴0<cosα<sinβ,0<cosβ<sinα,∴0<6ec8aac122bd4f6e<1,0<6ec8aac122bd4f6e<1,∴f(x)在(0,+∞)上单调递减,∴f(x)<f(0)=2.若x<0,α+β6ec8aac122bd4f6e,∵αβ为锐角,0<β6ec8aac122bd4f6eα6ec8aac122bd4f6e,0<α6ec8aac122bd4f6eβ6ec8aac122bd4f6e,0<sinβ<sin(6ec8aac122bd4f6eα),∴sinβ<cosα,0<sinα<sin(6ec8aac122bd4f6eβ),∴sinα<cosβ,∴6ec8aac122bd4f6e>1, 6ec8aac122bd4f6e>1,

f(x)在(-∞,0)上单调递增,∴f(x)<f(0)=2,∴结论成立.

歼灭难点训练

一、1.解析:函数y=-xcosx是奇函数,图象不可能是A和C,又当x∈(0, 6ec8aac122bd4f6e)时,

y<0.

答案:D

2.解析:f(x)=cos2x+sin(6ec8aac122bd4f6e+x)=2cos2x-1+cosx

=2[(cosx+6ec8aac122bd4f6e]-1.

答案:D

二、3.解:在[-π,π]上,y=|cosx|的单调递增区间是[-6ec8aac122bd4f6e,0]及[6ec8aac122bd4f6e,π].而f(x)依|cosx|取值的递增而递减,故[-6ec8aac122bd4f6e,0]及[6ec8aac122bd4f6e,π]为f(x)的递减区间.

4.解:由-6ec8aac122bd4f6eωx6ec8aac122bd4f6e,得f(x)的递增区间为[-6ec8aac122bd4f6e,6ec8aac122bd4f6e],由题设得

6ec8aac122bd4f6e

三、5.解:(1)∵-1≤sinα≤1且f(sinα)≥0恒成立,∴f(1)≥0

∵1≤2+cosβ≤3,且f(2+cosβ)≤0恒成立.∴f(1)≤0.

从而知f(1)=0∴b+c+1=0.

(2)由f(2+cosβ)≤0,知f(3)≤0,∴9+3b+c≤0.又因为b+c=-1,∴c≥3.

(3)∵f(sinα)=sin2α+(-1-c)sinα+c=(sinα6ec8aac122bd4f6e)2+c-(6ec8aac122bd4f6e)2,

当sinα=-1时,[f(sinα)]max=8,由6ec8aac122bd4f6e解得b=-4,c=3.

6.解:如图,设矩形木板的长边AB着地,并设OA=xOB=y,则a2=x2+y2-2xycosα≥2xy-2xycosα=2xy(1-cosα).

6ec8aac122bd4f6e

∵0<απ,∴1-cosα>0,∴xy6ec8aac122bd4f6e (当且仅当x=y时取“=”号),故此时谷仓的容积的最大值V1=(6ec8aac122bd4f6exysinα)b=6ec8aac122bd4f6e.同理,若木板短边着地时,谷仓的容积V的最大值V2=6ec8aac122bd4f6eab2cos6ec8aac122bd4f6e,

ab,∴V1V2

从而当木板的长边着地,并且谷仓的底面是以a为底边的等腰三角形时,谷仓的容积最大,其最大值为6ec8aac122bd4f6ea2bcos6ec8aac122bd4f6e.

7.解:如下图,扇形AOB的内接矩形是MNPQ,连OP,则OP=R,设∠AOP=θ,则

QOP=45°-θNP=Rsinθ,在△PQO中,6ec8aac122bd4f6e

6ec8aac122bd4f6e

PQ=6ec8aac122bd4f6eRsin(45°-θ).S矩形MNPQ=QP?NP=6ec8aac122bd4f6eR2sinθsin(45°-θ)=6ec8aac122bd4f6eR2?[cos(2θ-45°)-6ec8aac122bd4f6e]≤6ec8aac122bd4f6eR2,当且仅当cos(2θ-45°)=1,即θ=22.5°时,S矩形MNPQ的值最大且最大值为6ec8aac122bd4f6eR2.

工人师傅是这样选点的,记扇形为AOB,以扇形一半径OA为一边,在扇形上作角AOP且使∠AOP=22.5°,P为边与扇形弧的交点,自PPNOANPQOAOBQ,并作OMOAM,则矩形MNPQ为面积最大的矩形,面积最大值为6ec8aac122bd4f6eR2.

8.解:∵在[-6ec8aac122bd4f6e]上,1+sinx>0和1-sinx>0恒成立,∴原函数可化为y=

log2(1-sin2x)=log2cos2x,又cosx>0在[-6ec8aac122bd4f6e]上恒成立,∴原函数即是y=2log2cosx,在x∈[

6ec8aac122bd4f6e]上,6ec8aac122bd4f6e≤cosx≤1.

∴log26ec8aac122bd4f6e≤log2cosx≤log21,即-1≤y≤0,也就是在x∈[-6ec8aac122bd4f6e]上,ymax=0,

ymin=-1.

6ec8aac122bd4f6e

综合上述知,存在6ec8aac122bd4f6e符合题设.

 

 

 


同步练习册答案