(A)5 (B)1 (C)10或2 (D)5或1 查看更多

 

题目列表(包括答案和解析)

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是
{x|x≥6或x≤-4}
{x|x≥6或x≤-4}

B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是
(1,
2
(1,
2

C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=2
2
,BE=1,BF=2,若CE与圆相切,则线段CE的长为
7
7

查看答案和解析>>

 

 

(文)某电信部门执行的新的电话收费标准中,其中本地网营业区内的通话费标准:前3分钟为0.20元(不足3分钟按3分钟计算),以后的每分钟收0.10元(不足1分钟按1分钟计算。)在一次实习作业中,某同学调查了ABCDE五人某天拨打的本地网营业区内的电话通话时间情况,其原始数据如下表所示:

 

A

B

C

D

E

第一次通话时间

3分

3分45秒

3分55秒

3分20秒

6分

第二次通话时间

0分

4分

3分40秒

4分50秒

0分

第三次通话时间

0分

0分

5分

2分

0分

应缴话费(元)

 

 

 

 

 

 (1)在上表中填写出各人应缴的话费;

 (2)设通话时间为t分钟,试根据上表完成下表的填写(即这五人在这一天内的通话情况统计表):

时间段

频数累计

频数

频率

累计频率

0<t≤3

2

0.2

0.2

3<t≤4

 

 

 

 

4<t≤5

 

 

 

 

5<t≤6

 

 

 

 

合计

正 正

 

 

 

 (3)若该本地网营业区原来执行的电话收费标准是:每3分钟为0.20元(不足3分钟按3分钟计算)。问这五人这天的实际平均通话费与原通话标准下算出的平均通话费相比,是增多了还是减少了?增或减了多少?

 

查看答案和解析>>


(文)某电信部门执行的新的电话收费标准中,其中本地网营业区内的通话费标准:前3分钟为0.20元(不足3分钟按3分钟计算),以后的每分钟收0.10元(不足1分钟按1分钟计算。)在一次实习作业中,某同学调查了ABCDE五人某天拨打的本地网营业区内的电话通话时间情况,其原始数据如下表所示:

 
A
B
C
D
E
第一次通话时间
3分
3分45秒
3分55秒
3分20秒
6分
第二次通话时间
0分
4分
3分40秒
4分50秒
0分
第三次通话时间
0分
0分
5分
2分
0分
应缴话费(元)
 
 
 
 
 
 (1)在上表中填写出各人应缴的话费;
(2)设通话时间为t分钟,试根据上表完成下表的填写(即这五人在这一天内的通话情况统计表):
时间段
频数累计
频数
频率
累计频率
0<t≤3

2
0.2
0.2
3<t≤4
 
 
 
 
4<t≤5
 
 
 
 
5<t≤6
 
 
 
 
合计
正 正
 
 
 
 (3)若该本地网营业区原来执行的电话收费标准是:每3分钟为0.20元(不足3分钟按3分钟计算)。问这五人这天的实际平均通话费与原通话标准下算出的平均通话费相比,是增多了还是减少了?增或减了多少?

查看答案和解析>>

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵
(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:

查看答案和解析>>

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵
(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:

查看答案和解析>>

 

一、选择题:本大题共12个小题,每小题5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空题:本大题共4个小题,每小题4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答题:本大题共6个小题,共74分.解答要写出文字说明,证明过程或演算步骤.

 

17.解:(Ⅰ)∵l1∥l2

,????????????????????????? 3分

.??????????????????????? 6分

(Ⅱ)∵

,∴,当且仅当时取"=".??? 8分

,∴,???????????? 10分

,当且仅当时取"=".

故△ABC面积取最大值为.?????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率;??????????? 1分

②三次取球中有2次出现最大数字3的概率;????? 3分

③三次取球中仅有1次出现最大数字3的概率.????? 5分

∴P(ξ=3)=P1+P2+P3=.??????????????????????? 6分

(Ⅱ)在ξ=k时, 利用(Ⅰ)的原理可知:

(k=1、2、3、4).?? 8分

则ξ的概率分布列为:

ξ

1

2

3

4

P

??????????????????????????????????? 10分

∴ξ的数学期望Eξ=1×+2×+3×+4× = .????????? 12分

 

19.(Ⅰ)证明:∵四边形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等边三角形,设O是AA1的中点,连接BO,则BO⊥AA1 2分

∵侧面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面积为,知C到AA1的距离为,∴△AA1C1是等边三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB两两垂直,以O为原点,建立如图空间直角坐标系,则.则.??????????????????????????? 5分

是平面ABC的一个法向量,

,则.设A1到平面ABC的距离为d.

.????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一个法向量是,又平面ACC1的一个法向量.    9分

.????????????????? 11分

∴二面角B-AC-C1的余弦值是.??????????????????? 12分

 

20.解:(Ⅰ),对称轴方程为,故函数在[0,1]上为增函数,∴.???????????????????????? 2分

时,.?????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????? 4分

,∴数列是以为首项,为公比的等比数列.

,∴.?????????????? 6分

(Ⅱ)∵,∴

???????????????? 7分

可知:当时,;当时,;当时,

????????????????????? 10分

可知存在正整数或6,使得对于任意的正整数n,都有成立.??? 12分

 

21.解:(Ⅰ)设

.∵

,∴,∴.?????????????????? 2分

则N(c,0),M(0,c),所以

,则

∴椭圆的方程为.?????????????????????? 4分

(Ⅱ)∵圆O与直线l相切,则,即,????????? 5分

消去y得

∵直线l与椭圆交于两个不同点,设

,?????????????????? 7分

.????? 8分

.??????????? 9分

(或).

,则

,则

时单调递增,????????????????????? 11分

∴S关于μ在区间单调递增,

.???????????????????????????? 12分

(或

∴S关于u在区间单调递增,???????????????????? 11分

.)???????????????? 12分

 

22.解:(Ⅰ)因为,则,   1分

时,;当时,

上单调递增;在上单调递减,

∴函数处取得极大值.???????????????????? 2分

∵函数在区间(其中)上存在极值,

解得.??????????????????????? 3分

(Ⅱ)不等式,即为,???????????? 4分

,∴,?? 5分

,则,∵,∴上递增,

,从而,故上也单调递增,

.??????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??? 8分

,??????????????? 9分

………

,??????????????????????? 10分

叠加得:

.???????????????????? 12分

.???????????????????? 14


同步练习册答案