错解 移项得.两边平方得 查看更多

 

题目列表(包括答案和解析)

完成解不等式2x+2<4x-1的算法:

第一步,移项并合并同类项,得________.

第二步,在不等式的两边同时除以x的系数,得________.

查看答案和解析>>

先阅读下面的文字:“求
1+
1+
1+…
的值时,采用了如下的方式:令
1+
1+
1+…
=x
,则有x=
1+x
,两边平方,得1+x=x2,解得x=
1+
5
2
(负值已舍去)”.可用类比的方法,求2+
1
2+
1
2+…
的值为
1+
2
1+
2

查看答案和解析>>

先阅读下面的文字:“求的值时,采用了如下的方式:令,则有,两边平方,得1+x=x2,解得(负值已舍去)”.可用类比的方法,求的值为   

查看答案和解析>>

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>

看下面的四段话,其中不是解决问题的算法的是(  )

查看答案和解析>>


同步练习册答案