(2)设左特征点为.左焦点为.可设直线的方程为 查看更多

 

题目列表(包括答案和解析)

设双曲线C:
x2
a2
-
y2
b2
=1
的右焦点为F2,过点F2的直线l与双曲线C相交于A,B两点,直线l的斜率为
35
,且
AF2
=2
F2B

(1)求双曲线C的离心率;
(2)如果F1为双曲线C的左焦点,且F1到l的距离为 
2
35
3
,求双曲线C的方程.

查看答案和解析>>

(如图)过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F任作一条与两坐标轴都不垂直的弦AB;若点M在x轴上,且使得MF为△AMB的一条内角平分线,则称点M为该椭圆的“左特征点”.
(1)求椭圆
x2
5
+y2
=1的“左特征点”M的坐标.
(2)试根据(1)中的结论猜测:椭圆
x2
a2
+
y2
b2
=1(a>b>0)的“左特征点”M是一个怎么样的点?并证明你的结论.

查看答案和解析>>

(本题12分)

分别是椭圆  的左、右焦点,是该椭圆上的一个动点,为坐标原点.

 (1)求的取值范围;

(2)设过定点的直线与椭圆交于不同的两点M、N,且∠为锐角,求直线的斜率的取值范围.

 

查看答案和解析>>

如图,已知是椭圆的右焦点;轴交于两点,其中是椭圆的左焦点.

1求椭圆的离心率;

2轴的正半轴的交点为,点是点关于轴的对称点,试判断直线的位置关系;

3设直线交于另一点,若的面积为,求椭圆的标准方程.

 

查看答案和解析>>

如图,在平面直角坐标系中,椭圆的左、右焦点分别为.已知都在椭圆上,其中为椭圆的离心率.

(1)求椭圆的方程;

(2)设是椭圆上位于轴上方的两点,且直线与直线平行,交于点P.

(i)若,求直线的斜率;

(ii)求证:是定值.

 

查看答案和解析>>


同步练习册答案