题目列表(包括答案和解析)
如图所示,圆柱的高为2,底面半径为
,AE、DF是圆柱的两条母线,过
作圆柱的截面交下底面于
.![]()
(1)求证:
;
(2)若四边形ABCD是正方形,求证
;
(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。
![]()
【解析】第一问中,利用由圆柱的性质知:AD平行平面BCFE
又过
作圆柱的截面交下底面于
.
∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF
AD∥EF
第二问中,由线面垂直得到线线垂直。四边形ABCD是正方形![]()
又![]()
BC、AE是平面ABE内两条相交直线
![]()
![]()
第三问中,设正方形ABCD的边长为x,则在![]()
在![]()
由(2)可知:
为二面角A-BC-E的平面角,所以![]()
证明:(1)由圆柱的性质知:AD平行平面BCFE
又过
作圆柱的截面交下底面于
.
∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF
AD∥EF![]()
(2)
四边形ABCD是正方形![]()
又![]()
BC、AE是平面ABE内两条相交直线
![]()
![]()
(3)设正方形ABCD的边长为x,则在![]()
在![]()
由(2)可知:
为二面角A-BC-E的平面角,所以![]()
| 1 | 16 |
如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.
![]()
【解析】(Ⅰ)因为![]()
又
是平面PAC内的两条相较直线,所以BD
平面PAC,
而
平面PAC,所以
.
(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD
平面PAC,
所以
是直线PD和平面PAC所成的角,从而![]()
.
由BD
平面PAC,
平面PAC,知
.在
中,由![]()
,得PD=2OD.因为四边形ABCD为等腰梯形,
,所以
均为等腰直角三角形,从而梯形ABCD的高为
于是梯形ABCD面积
在等腰三角形AOD中,![]()
所以![]()
故四棱锥
的体积为
.
![]()
【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD
平面PAC即可,第二问由(Ⅰ)知,BD
平面PAC,所以
是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由
算得体积
零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分
【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)=
=
.
(Ⅱ)(i)解:一等品零件的编号为
.从这6个一等品零件中随机抽取2个,所有可能的结果有:
,
,
,
,
,
,
共有15种.
(ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:
,
,共有6种.
所以P(B)=
.
(本小题满分12分)
如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=
,∠BAD=∠CDA=45°.
(Ⅰ)求异面直线CE与AF所成角的余弦值;
(Ⅱ)证明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分
【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)=
=
.
(Ⅱ)(i)解:一等品零件的编号为
.从这6个一等品零件中随机抽取2个,所有可能的结果有:
,
,
,
,
,
,
共有15种.
(ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:
,
,共有6种.
所以P(B)=
.
(本小题满分12分)
如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=
,∠BAD=∠CDA=45°.
(Ⅰ)求异面直线CE与AF所成角的余弦值;
(Ⅱ)证明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com