当且仅当x=,即x=18时取等号,此时y取得最大值.----------10分 查看更多

 

题目列表(包括答案和解析)

C

[解析] 依题意得=()[x+(1-x)]=13+≥13+2=25,当且仅当,即x时取等号,选C.

查看答案和解析>>

已知函数

(1)若函数在其定义域内为单调递增函数,求实数的取值范围。

(2)若函数,若在[1,e]上至少存在一个x的值使成立,求实数的取值范围。

【解析】第一问中,利用导数,因为在其定义域内的单调递增函数,所以 内满足恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,转换为不等式有解来解答即可。

解:(1)

因为在其定义域内的单调递增函数,

所以 内满足恒成立,即恒成立,

亦即

即可  又

当且仅当,即x=1时取等号,

在其定义域内为单调增函数的实数k的取值范围是.

(2)在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,设

 上的增函数,依题意需

实数k的取值范围是

 

查看答案和解析>>

设函数f(x)=ex-x-1,g(x)=e2x-x-7.
(1)解不等式f(x)≤g(x);
(2)事实上:对于?x∈R,有f(x)≥0成立,当且仅当x=0时取等号.由此结论证明:(1+
1x
)x
<e,(x>0).

查看答案和解析>>

先阅读第(1)题的解法,再解决第(2)题:
(1)已知向量
a
=(3,4),
b
=(x,y),
a
b
=1
,求x2+y2的最小值.
解:由|
a
b
|≤|
a
|•|
b
|
1≤
x2+y2
,当
b
=(
3
25
4
25
)
时取等号,
所以x2+y2的最小值为
1
25

(2)已知实数x,y,z满足2x+3y+z=1,则x2+y2+z2的最小值为
1
14
1
14

查看答案和解析>>

先阅读第(1)题的解法,再解决第(2)题:
(1)已知向量
a
=(3,4),
b
=(x,y),
a
b
=1
,求x2+y2的最小值.
|
a
b
|≤|
a
|•|
b
|
1≤
x2+y2
,当
b
=(
3
25
4
25
)
时取等号,
所以x2+y2的最小值为
1
25

(2)已知实数x,y,z满足2x+3y+z=1,则x2+y2+z2的最小值为______.

查看答案和解析>>


同步练习册答案