题目列表(包括答案和解析)
本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.
1.(本小题满分7分) 选修4一2:矩阵与变换
如果曲线![]()
在矩阵
的作用下变换得到曲线
, 求
的值。
2.(本小题满分7分) 选修4一4:坐标系与参数方程
已知曲线
的极坐标方程是
,直线
的参数方程是
(
为参数).
(1)将曲线
的极坐标方程化为直角坐标方程;O
(2)设直线
与
轴的交点是
,
是曲线
上一动点,求
的最大值.
3.(本小题满分7分)选修4-5:不等式选讲
设函数![]()
(1)解不等式
; (2)若
的取值范围。
(04年上海卷文)(本题满分14分) 第1小题满分6分, 第2小题满分8分
如图, 直线y=
x与抛物线y=
x2-4交于A、B两点, 线段AB的垂直平分线与直线y=-5交于Q点.
(1) 求点Q的坐标;
(2) 当P为抛物线上位于线段AB下方
(含A、B) 的动点时, 求ΔOPQ面积的最大值.
![]()
已知递增等差数列
满足:
,且
成等比数列.
(1)求数列
的通项公式
;
(2)若不等式
对任意
恒成立,试猜想出实数
的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列
公差为
,
由题意可知
,即
,解得d,得到通项公式,第二问中,不等式等价于
,利用当
时,
;当
时,
;而
,所以猜想,
的最小值为
然后加以证明即可。
解:(1)设数列
公差为
,由题意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等价于
,
当
时,
;当
时,
;
而
,所以猜想,
的最小值为
. …………8分
下证不等式
对任意
恒成立.
方法一:数学归纳法.
当
时,
,成立.
假设当
时,不等式
成立,
当
时,
,
…………10分
只要证
,只要证
,
只要证
,只要证
,
只要证
,显然成立.所以,对任意
,不等式
恒成立.…14分
方法二:单调性证明.
要证 ![]()
只要证
,
设数列
的通项公式
, …………10分
, …………12分
所以对
,都有
,可知数列
为单调递减数列.
而
,所以
恒成立,
故
的最小值为
.
|
|
|
|
|
|
|
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com