(1) 若圆(x-2)2+(y-1)2=与椭圆相交于A.B两点且线段AB恰为圆的直径.求椭圆方程, 查看更多

 

题目列表(包括答案和解析)

[文]已知圆(x-2)2+(y-1)2=
20
3
,椭圆b2x2+a2y2=a2b2(a>b>0)的离心率为
2
2
,若圆与椭圆相交于A、B,且线段AB是圆的直径,求椭圆的方程.

查看答案和解析>>

[文]已知圆(x-2)2+(y-1)2=,椭圆b2x2+a2y2=a2b2(a>b>0)的离心率为,若圆与椭圆相交于A、B,且线段AB是圆的直径,求椭圆的方程.

查看答案和解析>>

椭圆C的中心在坐标原点,焦点在x轴上,该椭圆经过点P(1,
3
2
)
且离心率为
1
2

(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
F1(-c,0),F2(c,0)
分别是左、右焦点,过F1的直线与圆(x+c)2+(y+2)2=1相切,且与椭圆E交于A、B两点.
(1)当AB=
16
5
时,求椭圆E的方程;
(2)若直线AB的倾斜角为锐角,当c变化时,求证:AB的中点在一定直线上.

查看答案和解析>>

椭圆C的中心在原点O,焦点在x轴,它的短轴长为2,过焦点与x轴垂直的直线与椭圆C相交于A,B两点且|AB|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过定点N(1,0)的直线l交椭圆C于C、D两点,交y轴于点P,若
PC
 1
CN
PD
=λ2
DN
,求证:λ12为定值.

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,共60分。

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

B

A

C

B

C

B

C

C

A

A

D

二、填空题:本大题共4小题,每小题4分,共16分

13、 -1    14、   24/5   15、 16/3     16、 

解:由 得 P ( 1,-1)

   据题意,直线l与直线垂直,故l斜率

   ∴ 直线l方程为   即 .      

解:连结PO,得

当PO通过圆心时有最大值和最小值

解:设生产甲、乙两种肥料各车皮,利润总额为元,那么

画图得当时总额的最大值为30000

解:(1)

(2)或0

解:(1)设A(x1,y1),B(x2,y2),AB的方程为y-1=k(x-2) 即y=kx+1-2k①

  ∵离心率e=∴椭圆方程可化为

将①代入②得(1+2k2)x2+4(1-2k)?kx+2(1-2k)2-2b2=0

∵x1+x2=    ∴k=-1

∴x1x2=  又  ∴

   ∴b2=8     ∴

(2)设(不妨设m<n)则由第二定义知

    或

        

 

解:由已知得 A (-1, 0 )、B ( 1, 0 ),

   设 P ( x, y ),  C ( x0, y0 ) ,  则 D (x0, -y0 ),

   由A、C、P三点共线得                    ①

   由D、B、P三点共线得                    ②

①×② 得                              ③

又 x02 + y02 = 1,   ∴ y02 = 1-x02   代入③得  x2-y2 = 1,

即点P在双曲线x2-y2 = 1上, 故由双曲线定义知,存在两个定点E (-, 0 )、

F (, 0 )(即此双曲线的焦点),使 | | PE |-| PF | | = 2  (即此双曲线的实轴长) 为定值.

 

 


同步练习册答案