因为Ep’≥0.故得: 查看更多

 

题目列表(包括答案和解析)

(I)某同学查资料得知:弹簧的弹性势能仅与弹簧的劲度系数和形变量有关,并且与形变量的平方成正比.为了检验此结论的正确性,他设计了如下实验:
a)取一根轻质弹簧和一根内径略大的直玻璃管,将玻璃管固定的水平桌面上,将弹簧插入玻璃管并固定一端,如图所示.
b)将小钢球放入玻璃管,轻推小球,使弹簧压缩到某一位置后,测出弹簧的压缩量x.c)然后突然撤去外力,小球沿水平方向弹出落在地面上.记录小球的落地位置.
d)保持弹簧压缩量不变,重复10次上述操作,从而确定小球的平均落点,测得小钢球的水平射程s.
e)多次改变弹簧的压缩量x的数值x1、x2、x3…,重复以上步骤,测得小钢球的多组水平射程s1、s2、s3….

请你回答下列问题:
①在实验中,“保持弹簧压缩量不变,重复10次上述操作,从而确定小球的平均落点”的目的是为了减小
偶然误差
偶然误差
(填“系统误差”或“偶然误差”).
②若要测量小钢球的水平射程s,除图中画出的取材以外,还必须选取的实验器材是
BDE
BDE

A.秒表         B.刻度尺        C.螺旋测微器   D.白纸         E.复写纸
③该同学根据实验的测量结果,作出了弹簧形变量x与小钢球水平射程s的s-x图象,并根据能量守恒定
律推导出了Ep与水平射程s的关系式:Ep=
mgs24k
,(式中h是开始时小球离地面的高度).据此他推断
出弹簧的弹性势能Ep与x2成正比,他从Ep∝s2得到Ep∝x2的理由是
由图象可看出s与x成正比,故Ep与x2成正比
由图象可看出s与x成正比,故Ep与x2成正比


(II)(10分)用右图所示的电路,测定一节干电池的电动势和内阻.电池的内阻较小,为了防止在调节滑动变阻器时选成短路,电路中用一定值电阻R0起保护作用.除电池、开关和导线外,可供使用的实验器材还有:
A.量程0-3V的电压表
B.量程0-15V的电压表
C.量程0-0.6A的电流表
D.量程0-3A的电流表
E.(阻值3Ω、额定功率5W)的定值电阻
F.(阻值10Ω、额定功率10W)的定值电阻
G.(阻值范围0-10Ω、额定电流2A)的滑动变阻器
H.(阻值范围0-100Ω、额定电流1A)的滑动变阻器
(1)要正确完成实验,电压表的应选择
3
3
V,电流表的应选择
C
C
; R0应选择
E
E
,R应选择
G
G
.(用选项字母符号表示)
(2)引起该实验系统误差的主要原因是
由于电压表的分流作用造成电流表读数总是比电池实际输出电流小.
由于电压表的分流作用造成电流表读数总是比电池实际输出电流小.

查看答案和解析>>

第七部分 热学

热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。

一、分子动理论

1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)

对于分子(单原子分子)间距的计算,气体和液体可直接用,对固体,则与分子的空间排列(晶体的点阵)有关。

【例题1】如图6-1所示,食盐(NaCl)的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3kg/mol,密度为2.2×103kg/m3,阿伏加德罗常数为6.0×1023mol-1,求食盐晶体中两个距离最近的钠离子中心之间的距离。

【解说】题意所求即图中任意一个小立方块的变长(设为a)的倍,所以求a成为本题的焦点。

由于一摩尔的氯化钠含有NA个氯化钠分子,事实上也含有2NA个钠离子(或氯离子),所以每个钠离子占据空间为 v = 

而由图不难看出,一个离子占据的空间就是小立方体的体积a3 ,

即 a3 =  = ,最后,邻近钠离子之间的距离l = a

【答案】3.97×10-10m 。

〖思考〗本题还有没有其它思路?

〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有×8个离子 = 分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。)

2、物质内的分子永不停息地作无规则运动

固体分子在平衡位置附近做微小振动(振幅数量级为0.1),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s)。

无论是振动还是迁移,都具备两个特点:a、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b、剧烈程度和温度相关。

气体分子的三种速率。最可几速率vP :f(v) = (其中ΔN表示v到v +Δv内分子数,N表示分子总数)极大时的速率,vP == ;平均速率:所有分子速率的算术平均值, ==;方均根速率:与分子平均动能密切相关的一个速率,==〔其中R为普适气体恒量,R = 8.31J/(mol.K)。k为玻耳兹曼常量,k =  = 1.38×10-23J/K 〕

【例题2】证明理想气体的压强P = n,其中n为分子数密度,为气体分子平均动能。

【证明】气体的压强即单位面积容器壁所承受的分子的撞击力,这里可以设理想气体被封闭在一个边长为a的立方体容器中,如图6-3所示。

考查yoz平面的一个容器壁,P =            ①

设想在Δt时间内,有Nx个分子(设质量为m)沿x方向以恒定的速率vx碰撞该容器壁,且碰后原速率弹回,则根据动量定理,容器壁承受的压力

 F ==                            ②

在气体的实际状况中,如何寻求Nx和vx呢?

考查某一个分子的运动,设它的速度为v ,它沿x、y、z三个方向分解后,满足

v2 =  +  + 

分子运动虽然是杂乱无章的,但仍具有“偶然无序和统计有序”的规律,即

 =  +  +  = 3                    ③

这就解决了vx的问题。另外,从速度的分解不难理解,每一个分子都有机会均等的碰撞3个容器壁的可能。设Δt = ,则

 Nx = ·3N = na3                         ④

注意,这里的是指有6个容器壁需要碰撞,而它们被碰的几率是均等的。

结合①②③④式不难证明题设结论。

〖思考〗此题有没有更简便的处理方法?

〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z这6个方向运动(这样造成的宏观效果和“杂乱无章”地运动时是一样的),则 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子间存在相互作用力(注意分子斥力和气体分子碰撞作用力的区别),而且引力和斥力同时存在,宏观上感受到的是其合效果。

分子力是保守力,分子间距改变时,分子力做的功可以用分子势能的变化表示,分子势能EP随分子间距的变化关系如图6-4所示。

分子势能和动能的总和称为物体的内能。

二、热现象和基本热力学定律

1、平衡态、状态参量

a、凡是与温度有关的现象均称为热现象,热学是研究热现象的科学。热学研究的对象都是有大量分子组成的宏观物体,通称为热力学系统(简称系统)。当系统的宏观性质不再随时间变化时,这样的状态称为平衡态。

b、系统处于平衡态时,所有宏观量都具有确定的值,这些确定的值称为状态参量(描述气体的状态参量就是P、V和T)。

c、热力学第零定律(温度存在定律):若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。

2、温度

a、温度即物体的冷热程度,温度的数值表示法称为温标。典型的温标有摄氏温标t、华氏温标F(F = t + 32)和热力学温标T(T = t + 273.15)。

b、(理想)气体温度的微观解释: = kT (i为分子的自由度 = 平动自由度t + 转动自由度r + 振动自由度s 。对单原子分子i = 3 ,“刚性”〈忽略振动,s = 0,但r = 2〉双原子分子i = 5 。对于三个或三个以上的多原子分子,i = 6 。能量按自由度是均分的),所以说温度是物质分子平均动能的标志。

c、热力学第三定律:热力学零度不可能达到。(结合分子动理论的观点2和温度的微观解释很好理解。)

3、热力学过程

a、热传递。热传递有三种方式:传导(对长L、横截面积S的柱体,Q = K

查看答案和解析>>

1.B 2.A 3.B   4. B   5.C   6.B   7.D  8.ABD .ABC   10.D

11.  丙   错误操作是先放开纸带后接通电源。

(1)左;(2)

(3)    

(4) ΔEP>ΔEK这是因为实验中有阻力。

(5)在实验误差允许围内,机械能守恒

12.(1)用天平分别测出滑块A、B的质量

   (2)

   (3)

由能量守恒知

13.解:(1)设小球摆回到最低点的速度为v,绳的拉力为T,从F开始作用到小球返回到最低点的过程中,运用动能定理有,在最低点根据牛顿第二定律有

(2)设小球摆到的最高点与最低点相差高度为H,对全过程运用动能定理有

14.解:(1)汽车以正常情况下的最高速度行驶时 的功率是额定功率

这时汽车做的匀速运动,牵引力和阻力大小相等,即F=F

设阻力是重力的k倍,F=kmg

代入数据得k=0.12

(2)设汽车以额定功率行驶速度为时的牵引力为,则,

而阻力大小仍为代入数据可得a=1.2

   15.解:(1)设物体A、B相对于车停止滑动时,车速为v,根据动量守恒定律

方向向右

(2)设物体A、B在车上相对于车滑动的距离分别为,车长为L,由功能关系

可知L至少为6.8m

     16.解:设A、B系统滑到圆轨道最低点时锁定为,解除弹簧锁定后A、B的速度分别为,B到轨道最高点的速度为V,则有

解得:

17.解:炮弹上升到达最高点的高度为H,根据匀变速直线运动规律,有  v02=2gH     

设质量为m的弹片刚爆炸后的速度为V,另一块的速度为v,根据动量守恒定律,

mV=(M-mv    

设质量为m的弹片运动的时间为t,根据平抛运动规律,有 H=gt2      R=Vt     

炮弹刚爆炸后,由能量守恒定律可得:两弹片的总动能Ek=mV2+Mmv2     

解以上各式得  Ek==6.0×104 J   

 

 

 


同步练习册答案