题目列表(包括答案和解析)
(1)ξ1表示重复抛掷1枚骰子n次中出现点数是3的倍数的次数;
(2)ξ2表示连续抛掷2枚骰子,所得的2枚骰子的点数之和;
(3)ξ3表示1个击中目标的概率为0.9的射手从开始射击到第一次击中目标所需要的射击次数.
| C | 0 m |
| C | 1 m |
| C | m m |
(08年扬州中学) 如果有穷数列
(
为正整数)满足条件
,
,…,
,即
(
),我们称其为“对称数列”.例如,由组合数组成的数列
就是“对称数列”.
(1)设
是项数为7的“对称数列”,其中
是等差数列,且
,
.依次写出
的每一项;
(2)设
是项数为
(正整数
)的“对称数列”,其中
是首项为
,公差为
的等差数列.记
各项的和为
.当
为何值时,
取得最大值?并求出
的最大值;
(3)对于确定的正整数
,写出所有项数不超过
的“对称数列”,使得
依次是该数列中连续的项;当![]()
时,求其中一个“对称数列”前
项的和![]()
(1)设{bn}是项数为7的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项.
(2)设{cn}是项数为2k-1(正整数k>1)的“对称数列”,其中ck,ck+1,…,c2k-1是首项为50,公差为-4的等差数列.记{cn}各项的和为S2k-1,当k为何值时,S2k-1取得最大值?并求出S2k-1的最大值.
(3)对于确定的正整数m>1,写出所有项数不超过2m的“对称数列”,使得1,2,22,…,2m-1依次是该数列中连续的项;当m>1 500时,求其中一个“对称数列”前2 008项的和S2008.
(文)如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.
(1)设{bn}是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项;
(2)设{cn}是49项的“对称数列”,其中c25,c26,…,c49是首项为1,公比为2的等比数列,求{cn}各项的和S;
(3)设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为2,公差为3的等差数列,求{dn}前n项的和Sn(n=1,2,…,100).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com