故.-----------------13分 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

   某种家用电器每台的销售利润与该电器的无故障使用时间 (单位:年)有关. 若,则销售利润为元;若,则销售利润为元;若,则销售利润为元.设每台该种电器的无故障使用时间这三种情况发生的概率分别为,叉知是方程的两个根,且   (1)求的值;  (2)记表示销售两台这种家用电器的销售利润总和,求的期望.

查看答案和解析>>

((本小题共13分)

若数列满足,数列数列,记=.

(Ⅰ)写出一个满足,且〉0的数列

(Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;

(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。

【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5

(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5

(Ⅱ)必要性:因为E数列A5是递增数列,所以.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故是递增数列.综上,结论得证。

 

 

查看答案和解析>>

(本小题满分13分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司

缴纳每辆900元的保险金.对在一年内发生此种事故的每辆汽车,单位获9000元

的赔偿(假设每辆车最多只赔偿一次)。设这三辆车在一年内发生此种事故的概率

分别为且各车是否发生事故相互独立,求一年内该单位在此保险中:

(1)获赔的概率;(4分)

(2)获赔金额的分别列与期望。(9分)

 

查看答案和解析>>

(本小题满分13分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金.对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次)。设这三辆车在一年内发生此种事故的概率分别为且各车是否发生事故相互独立,求一年内该单位在此保险中:
(1)获赔的概率;(4分)
(2)获赔金额的分别列与期望。(9分)

查看答案和解析>>

(本小题满分13分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司

缴纳每辆900元的保险金.对在一年内发生此种事故的每辆汽车,单位获9000元

的赔偿(假设每辆车最多只赔偿一次)。设这三辆车在一年内发生此种事故的概率

分别为且各车是否发生事故相互独立,求一年内该单位在此保险中:

(1)获赔的概率;

(2)获赔金额的分别列与期望。

查看答案和解析>>

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有 一项是符合题目要求的。

题号

1

2

3

4

5

6

7

8

9

10

答案

 

 

 

 

 

 

 

 

 

 

二、填空题:(本大题共5个小题,每小题5分,共25分,)

11.    12.     13.    14.       15.

 

三、解答题:


同步练习册答案