题目列表(包括答案和解析)
某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:
(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;
(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为
中任选出两位同学,共同帮助成绩在
中的某一个同学,试列出所有基本事件;若
同学成绩为43分,
同学成绩为95分,求
、
两同学恰好被安排在“二帮一”中同一小组的概率.
|
分 组 |
频 数 |
频 率[来源:学_科_网] |
|
[40, 50 ) |
2 |
0.04 |
|
[ 50, 60 ) |
3 |
0.06 |
|
[ 60, 70 ) |
14 |
0.28 |
|
[ 70, 80 ) |
15 |
0.30 |
|
[ 80, 90 ) |
|
|
|
[ 90, 100 ] |
4 |
0.08 |
|
合 计 |
|
|
【解析】第一问利用表格可知第五行以此填入 12 0.24
第七行以此填入 50 1 估计本次全校85分以上学生比例为32%
第二问中,设数学成绩在[90,100]间的四个同学分别用字母B1,B2,B3,B4表示;被帮助的两个同学为A1,A2出现的“二帮一”小组有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4
A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4
A1、B1两同学恰好被安排在“二帮一”中同一小组的有 A1B1B2;A1B1B3;A1B1B4
l利用古典概型概率得到。
(Ⅰ)第五行以此填入 12 0.24 ……………2分
第七行以此填入 50 1 ……………4分
估计本次全校85分以上学生比例为32% ……………6分
(Ⅱ)设数学成绩在[90,100]间的四个同学分别用字母B1,B2,B3,B4表示;被帮助的两个同学为A1,A2出现的“二帮一”小组有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4
A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4
A1、B1两同学恰好被安排在“二帮一”中同一小组的有 A1B1B2;A1B1B3;A1B1B4
所以 A1、B1两同学恰好被安排在“二帮一”中同一小组的概率为 3 /12 =1 /4
一、选择题(每小题5分,共60分)
1.A 2.C 3.C 4.D 5.B 6.A 7.D 8.D 9.C 10.B 11.B 12.D
二、填空题(每小题4分,共16分)
13.
14.3825 15.1 16.0ⅠⅡ
三、解答题
17.解:(Ⅰ)在
中,由
及余弦定理得
而
,则
;
(Ⅱ)由
及正弦定理得
,
而
,则
于是
,
由
得
,当
即
时,
。
18解:(Ⅰ)基本事件
共有36个,方程有正根等价于
,即
。设“方程有两个正根”为事件
,则事件
包含的基本事件为
共4个,故所求的概率为
;
(Ⅱ)试验的全部结果构成区域
,其面积为
设“方程无实根”为事件
,则构成事件
的区域为
,其面积为
故所求的概率为
19.解:(Ⅰ)证明:由
平面
及
得
平面
,则
而
平面
,则
,又
,则
平面
,
又
平面
,故
。
(Ⅱ)在
中,过点
作
于点
,则
平面
.
由已知及(Ⅰ)得
.
故
(Ⅲ)在
中过点
作
交
于点
,在
中过点
作
交
于点
,连接
,则由
得
由平面
平面
,则
平面
再由
得
平面
,又
平面
,则
平面
.
故当点
为线段
上靠近点
的一个三等分点时,
平面
.
20.解:(Ⅰ)设等差数列
的公差为
,
则
,
(Ⅱ)由
得
,故数列
适合条件①
而
,则当
或
时,
有最大值20
即
,故数列
适合条件②.
综上,故数列
是“特界”数列。
21.
证明:
消去
得

设点
,则
,
由
,
,即
化简得
,则
即
,故
(Ⅱ)解:由
化简得
由
得
,即
故椭圆的长轴长的取值范围是
。
22.解:(Ⅰ)
,由
在区间
上是增函数
则当
时,恒有
,
即
在区间
上恒成立。
由
且
,解得
.
(Ⅱ)依题意得
则
,解得
而
故
在区间
上的最大值是
。
(Ⅲ)若函数
的图象与函数
的图象恰有3个不同的交点,
即方程
恰有3个不等的实数根。
而
是方程
的一个实数根,则
方程
有两个非零实数根,
则
即
且
.
故满足条件的
存在,其取值范围是
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com