(2)是否存在最小的正整数k.使得不等式恒成立?如果存在.请求出最小的正整数k,如果不存在.请说明理由, 查看更多

 

题目列表(包括答案和解析)

已知函数为切点的切线倾斜角为.

(1)求m,n的值;

(2)是否存在最小的正整数k,使得不等式恒成立?若存在,求出最小的正整数k,否则请说明理由。

查看答案和解析>>

已知数列是其前n项的和,且

(I)求数列的通项公式;

(II)设,是否存在最小的正整数k,使得对于任意的正整数n,有恒成立?若存在,求出k的值;若不存在,说明理由

查看答案和解析>>

(本小题共13分)

设数列的通项公式为. 数列定义如下:对于正整数m是使得不等式成立的所有n中的最小值。

(Ⅰ)若,求

(Ⅱ)若,求数列的前2m项和公式;w.w.w.k.s.5.u.c.o.m    

(Ⅲ)是否存在pq,使得?如果存在,求pq的取值范围;如果不存在,请说明理由。

查看答案和解析>>

已知在函数的图象上以N(1,n)为切点的切线的倾斜角为

   (Ⅰ)求m、n的值;

   (Ⅱ)是否存在最小的正整数k,使得不等式恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由;

   (Ⅲ)(文科不做)求证: 

查看答案和解析>>

已知函数的图象上以N(1,n)为切点的切线倾斜角为.

   (1)求m,n的值;

   (2)是否存在最小的正整数k,使得不等式恒成立?若存在,求出最小的正整数k,否则请说明理由.

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

为锐角       

 (2)

  又 代入上式得:(当且仅当 时等号成立。)

  (当且仅当 时等号成立。)

17.解:(1)由已知得 解得.设数列的公比为

,可得.又,可知,即

解得. 由题意得.  .故数列的通项为

  (2)由于   由(1)得 

=

18.解:(1)因为     图象的一条对称轴是直线 

20081226

(2)

  由

分别令的单调增区间是(开闭区间均可)。

(3) 列表如下:

0

0

1

0

―1

0

19.解:(I)由,则.

两式相减得. 即.          

时,.∴数列是首项为4,公比为2的等比数列.

(Ⅱ)由(I)知.∴            

①当为偶数时,

∴原不等式可化为,即.故不存在合条件的.      

②当为奇数时,.

原不等式可化为,所以,又m为奇数,所以m=1,3,5……

20.解:(1)依题意,得

   (2)令

在此区间为增函数

在此区间为减函数

在此区间为增函数

处取得极大值又

因此,当

要使得不等式

所以,存在最小的正整数k=2007,

使得不等式恒成立。……7分

  (3)(方法一)

     

又∵由(2)知为增函数,

综上可得

(方法2)由(2)知,函数

上是减函数,在[,1]上是增函数又

所以,当时,-

又t>0,

,且函数上是增函数,

 

综上可得

21.解:(1) 

函数有一个零点;当时,,函数有两个零点。

   (2)假设存在,由①知抛物线的对称轴为x=-1,∴ 

由②知对,都有

又因为恒成立,  ,即,即

时,

其顶点为(-1,0)满足条件①,又,

都有,满足条件②。∴存在,使同时满足条件①、②。

   (3)令,则

内必有一个实根。即

使成立。