设点在这个椭圆上.且.求. 查看更多

 

题目列表(包括答案和解析)

椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为

(Ⅰ)求椭圆的方程;

(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使与椭圆有且只有一个公共点,设直线的斜率分别为。若,试证明为定值,并求出这个定值。

 

查看答案和解析>>

椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为
(Ⅰ)求椭圆的方程;
(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使与椭圆有且只有一个公共点,设直线的斜率分别为。若,试证明为定值,并求出这个定值。

查看答案和解析>>

椭圆C:的左右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.

查看答案和解析>>

椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为
(Ⅰ)求椭圆的方程;
(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使与椭圆有且只有一个公共点,设直线的斜率分别为。若,试证明为定值,并求出这个定值。

查看答案和解析>>

椭圆C:的左、右焦点分别是F1.F2,离心率为过F,且垂直于x轴的直线被椭圆C截得的线段长为l

(Ⅰ)求椭圆C的方程;

(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;

(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.

设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.

查看答案和解析>>

一、选择题

1―5  BCAAB;6-10  BCACD ;11-12  DA

二、填空题

13、2   14、9   15、   16、②

三、解答题

17.解:

(Ⅰ)由,得

,得.??????????????????????????????????????????????????????????????????????????????????????? 2分

所以.??????????????????????????????????????????? 5分

(Ⅱ)由正弦定理得.?????????????????????????????????????????????????? 8分

所以的面积.????????????????????????? 10分

18.解:

(1)       ,  

又椭圆的中心在原点,焦点在轴上,

椭圆的方程为:

(2)由

19.解:

(1)连结,则

(2)证明:连结,则PQ∥平面AA1B1B.

20.解:

设数列的公差为,则

.????????????????????????????????????????????????????????????????????????????????????????????? 3分

成等比数列得

整理得

解得.???????????????????????????????????????????????????????????????????????????????????????????????????? 7分

时,.????????????????????????????????????????????????????????????????????????????????? 9分

时,

于是.????????????????????????????????????????????????????? 12分

21.解:

(1)函数的图像经过点

  

(2)函数为

   

时,函数

函数为的定义域为:;值域为:

(3)函数的反函数为

    不等式

      不等式的解集为

22.证明:

(1)PA⊥底面ABCD  

∠BAD=90° 

平面

是斜线在平面内的射影

 AE⊥PD       BE⊥PD

(2)连结

PA⊥底面ABCD   是斜线在平面内的射影

     

(3)过点作,连结,则(或其补角)为异面直线AE与CD所成的角。由(2)知      平面

    平面      

  

  异面直线AE与CD所成的角为

 


同步练习册答案