18 某商场举行抽奖促销活动.抽奖规则是:从装有9个白球.1个红球的箱子中每次随机地摸出一个球.记下颜色后放回.摸出一个红球获得二等奖,摸出两个红球获得一等奖.现有甲.乙两位顾客.规定:甲摸一次.乙摸两次.求 (1)甲.乙两人都没有中奖的概率, (2)甲.乙两人中至少有一人获二等奖的概率. 查看更多

 

题目列表(包括答案和解析)

(本小题12分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2

表1:

生产能力分组

人数

4

8

5

3

表2:

生产能力分组

人数

6

y

36

18

(1)先确定,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)(注意:本题请在答题卡上作图)

(2)分别估计类工人和类工人生产能力的众数、中位数和平均数。(精确到0.1)

 

查看答案和解析>>

(本小题12分)某乡镇为了盘活资本,优化组合,决定引进资本拯救出现严重亏损的企业。长年在外经商的王先生为了回报家乡,决定投资线路板厂和机械加工厂。王先生经过预算,如果引进新技术在优化管理的情况下,线路板厂和机械加工厂可能的最大盈利率分别为95﹪和80﹪,可能的最大亏损率分别为30﹪和10﹪。由于金融危机的影响,王先生决定最多出资100万元引进新技术,要求确保可能的资金亏损不超过18万元.问王先生对线路板厂和机械加工厂各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

(本小题12分)

某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据

x

6

8

10

12

y

2

3

5

6

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

(3)试根据(II)求出的线性回归方程,预测记忆力为9的同学的判断力。

(相关公式:

 

查看答案和解析>>

(本小题12分)某射手在一次射击训练中,射中10环,9环,8环、7环的概率分别是0.21,0.23,0.25,0.28,计算这个射手在一次射击中:

(1)射中10环或7环的概率;   (2)不够7环的概率。

 

查看答案和解析>>

(本小题12分)

某隧道横断面由抛物线和矩形的三边组成,尺寸如图2所示,某卡车载一集装箱,箱宽3m,车与箱共高4m,此车能否通过此隧道?请说明理由.

 

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 C     6 B   

7 A     8  A   9 C   10 D    11 C    12 B

二、13、3     14、      15、-160       16、   

三、17、解: (1)      ……… 3分

     的最小正周期为                     ………………… 5分

(2)  ,    …………………   7分     

               ………………… 10分  

               …………………  11分

 时,函数的最大值为1,最小值  ……… 12分

18.解:(1)P1=;                          ……… 6分

(2)方法一:P2=

方法二:P2=

方法三:P2=1-            ……… 12分

19、解法一:

(Ⅰ)连结CBCO,则OB C的中点,连结DO

∵在△AC中,OD均为中点,

ADO…………………………2分

A平面BD,DO平面BD

A∥平面BD。…………………4分

(Ⅱ)设正三棱柱底面边长为2,则DC = 1。

    ∵∠DC = 60°,∴C=

DEBCE

∵平面BC⊥平面ABC

DE⊥平面BC

EFBF,连结DF,则 DF⊥B

∴∠DFE是二面角D-B-C的平面角………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小为arctan………………12分

解法二:以AC的中D为原点建立坐标系,如图,

设| AD | = 1∵∠DC =60°∴| C| =

     则A(1,0,0),B(0,,0),C(-1,0,0),

(1,0),

(Ⅰ)连结CBOC的中点,连结DO,则     

     O.       =

A平面BD

A∥平面BD.………………………………………………4分

(Ⅱ)=(-1,0,),

       设平面BD的法向量为n = ( x , y , z ),则

       即  则有= 0令z = 1

n = (,0,1)          …………………………………8分

       设平面BC的法向量为m = ( x′ ,y′,z′)

 

      令y = -1,解得m = (,-1,0)

      二面角DBC的余弦值为cos<n , m>=

∴二面角DBC的大小为arc cos               …………12分

20、解: 解:

     (1)f(x)=x3+ax2+bx+c,    f′(x)=3x2+2ax+b,

         由f′(-)=a+b=0,   f′(1)=3+2a+b=0,得

         a=-,b=-2,…………  3分

f′(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:

(-∞,-

(-,1)

1

(1,+∞)

f′(x)

+

0

0

+

f(x)

 

极大值

极小值

所以函数f(x)的递增区间为(-∞,-)与(1,+∞);

递减区间为(-,1).             …………  6分

(2)f(x)=x3-x2-2x+c  x∈[-1,2],当x=-时,f(x)=+c为极大值,

而f(2)=2+c,则f(2)=2+c为最大值.      …………  8分

要使f(x)<c2(x∈[-1,2])恒成立,只须c2>f(2)=2+c,

解得c<-1或c>2.               …………  12分

21、(I)解:方程的两个根为

时,,所以

时,,所以

时,,所以时;

时,,所以.      …………  4分

(II)解:

.                          …………  8分

(Ⅲ)=                       …………  12分

22、解: (I)依题意知,点的轨迹是以点为焦点、直线为其相应准线,

离心率为的椭圆

设椭圆的长轴长为2a,短轴长为2b,焦距为2c,

,∴点在x轴上,且,且3

解之得:,     ∴坐标原点为椭圆的对称中心 

∴动点M的轨迹方程为:        …………  4分

(II)设,设直线的方程为,代入

                   ………… 5分

, 

    ………… 6分

,,

,

 

解得: (舍)   ∴ 直线EF在X轴上的截距为    …………8分

(Ⅲ)设,由知, 

直线的斜率为    ………… 10分

时,;

时,,

时取“=”)或时取“=”),

             ………… 12分            

综上所述                  ………… 14分