因为|AF1|-|AF2|=2a.所以.即.所以. 查看更多

 

题目列表(包括答案和解析)

如图,A为椭圆上的一个动点,弦ABAC分别过焦点F1F2,当AC垂直于x轴时,恰好有AF1AF2=3:1.

(Ⅰ) 求椭圆的离心率;(Ⅱ) 设.

①当A点恰为椭圆短轴的一个端点时,求的值;

②当A点为该椭圆上的一个动点时,试判断是否

为定值?若是,请证明;若不是,请说明理由.

查看答案和解析>>

下列四个命题中正确的是


  1. A.
    周期函数必有最小正周期
  2. B.
    只有三角函数才是周期函数
  3. C.
    因为sin(kx+2π)=sinkx,所以y=sinkx的最小正周期为2π
  4. D.
    周期函数的定义域一定是无限集

查看答案和解析>>

7. 解析:因为f(x)=3ax+1-2a在(0,1)上存在使,所以f(0)f(1)<0,即(1-2a)(a+1)<0所以

已知随机变量Y的所有可能取值为1,2,…,n,且取这些值的概率依次为k,2k,…,nk,求常数k的值.

查看答案和解析>>

已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。

第一问中,可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

第二问中,

假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得

代入1,2式中得到范围。

(Ⅰ) 可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

 (Ⅱ) 假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是

 

查看答案和解析>>

下面的四个推理中,运用三段论推理的是


  1. A.
    矩形是平行四边形,所以矩形的对角线互相平分
  2. B.
    17是质数,且17也是奇数,所以17是奇质数
  3. C.
    因为a(b+c)=ab+ac,所以loga(b+c)=logab+logac
  4. D.
    n=1,2时,方程xn+yn=zn都有正整数解,所以对任意的自然数n,方程xn+yn=zn都有正整数解

查看答案和解析>>


同步练习册答案