(2)若点P的坐标为(1,1),求证:直线PQ与圆相切,(3)试探究:当点P在圆O上运动时(不与A.B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明,若不是,请说明理由. 查看更多

 

题目列表(包括答案和解析)

(1)已知曲线C的极坐标方程为ρ2=
36
4cos2θ+9sin2θ

(Ⅰ)若以极点为原点,极轴所在的直线为x轴,求曲线C的直角坐标方程;
(Ⅱ)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值
(2)已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2+m-1=0

(I)求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(II)求实数m的取值范围.

查看答案和解析>>

(1)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于D,DE⊥AC交AC延长线于点E,OE交AD于点F.
(Ⅰ)求证:DE是⊙O的切线;
(Ⅱ)若
AC
AB
=
3
5
,求
AF
DF
的值.
(2)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线
C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线L的参数方程为:
x=-2+
2
2
t
y=-4+
2
2
t
,直线L与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线L的普通方程;  
(Ⅱ)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

直线AB过抛物线x2=2pyp>0)的焦点F,并与其相交于AB两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.

   (Ⅰ)求的取值范围;

   (Ⅱ)过AB两点分别作此抛物线的切线,两切线相交于N点.

        求证:

   (Ⅲ)若p是不为1的正整数,当,△ABN的面积的取值范围为[5,20]时,求该抛物线的方程.

查看答案和解析>>

直线AB过抛物线x2=2pyp>0)的焦点F,并与其相交于AB两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.

   (Ⅰ)求的取值范围;

   (Ⅱ)过AB两点分别作此抛物线的切线,两切线相交于N点.

        求证:

   (Ⅲ)若p是不为1的正整数,当,△ABN的面积的取值范围为[5,20]时,求该抛物线的方程.

查看答案和解析>>

点P是椭圆外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。

(1)若点P的坐标为,求直线的方程。

(2)设椭圆的左焦点为F,请问:当点P运动时,是否总是相等?若是,请给出证明。

 

查看答案和解析>>


同步练习册答案