则b=1,即椭圆的标准方程为---------- 查看更多

 

题目列表(包括答案和解析)

若椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
3
,焦点到对应准线的距离为8,则椭圆的标准方程为
 

查看答案和解析>>

如图所示,A、B是椭圆的两个顶点,C是线段AB的中点,F为椭圆的右焦点,射线OC交椭圆于点M,且|OF|=2,若MF⊥OA,则此椭圆的标准方程为
x2
8
+
y2
4
=1
x2
8
+
y2
4
=1

查看答案和解析>>

已知椭圆的离心率为,且其焦点F(c,0)(c>0)到相应准线l的距离为3,过焦点F的直线与椭圆交于A、B两点。

(1)求椭圆的标准方程;

(2)设M为右顶点,则直线AM、BM与准线l分别交于P、Q两点,(P、Q两点不重合),求证:

查看答案和解析>>

若椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
3
,焦点到对应准线的距离为8,则椭圆的标准方程为______.

查看答案和解析>>

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得.

(1)求椭圆的标准方程;           (2)求直线l的方程.

【解析】(1)中利用点F1到直线x=-的距离为可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到椭圆的方程。(2)中,利用,设出点A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在椭圆+y2=1上, 得到坐标的值,然后求解得到直线方程。

解:(1)∵F1到直线x=-的距离为,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵椭圆的焦点在x轴上,∴所求椭圆的方程为+y2=1.……4分

(2)设A(x1,y1)、B(x2,y2).由第(1)问知

,

……6分

∵A、B在椭圆+y2=1上,

……10分

∴l的斜率为.

∴l的方程为y=(x-),即x-y-=0.

 

查看答案和解析>>


同步练习册答案