17.甲.乙.丙.丁四人做相互传球练习.第一次甲传给其他三人中的一人.第二次由拿球者再传给其他三人中的一人.--.且拿球者传给其他三人中的任何一人都是等可能的.求:(Ⅰ)共传了四次.第四次球传回到甲的概率, 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

甲、乙、丙、丁4名同学被随机地分到三个社区参加社会实践,要求每个社区至少有一名同学。

(Ⅰ)求甲、乙两人都被分到社区的概率;

(Ⅱ)求甲、乙两人不在同一个社区的概率;

(Ⅲ)设随机变量为四名同学中到社区的人数,求的分布列和的值。

                             

查看答案和解析>>

(本小题满分12分)

甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试

合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:

(Ⅰ)至少有1人面试合格的概率;

(Ⅱ)签约人数的分布列和数学期望.

查看答案和解析>>

(本小题满分12分)

       甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件的二倍。

   (1)从甲、乙、丙加工的零件中各取一件检验,示至少有一件一等品的概率;

   (2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;

   (3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,其中一等品的个数记为X,求EX。

查看答案和解析>>

(本小题满分12分)

甲、乙、丙三人进行某项比赛,每局有两人参加,没有平局,在一局比赛中甲胜乙的概率为,甲胜丙的概,乙胜丙的概率为,比赛的规则是先由甲和乙进行第一局的比赛,然后每局的获胜者与未参加此局比赛的人进行下一局的比赛,在比赛中,有人获胜两局就算取得比赛的胜利,比赛结束

网]

 

查看答案和解析>>

(本小题满分12分)

甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.求:

(Ⅰ)至少有1人面试合格的概率;

(Ⅱ)签约人数的分布列和数学期望.

 

查看答案和解析>>

一、选择题:

DDCBA  BBDDA

ycy

11.0     12.(±1,0)    13.1    14.②④      15 706

三、解答题:

16.解:    2分

(Ⅰ)                                                        4分

(Ⅱ)由

单调递增区间为                    8分

(Ⅲ)

                          12分

17.解:(Ⅰ)                        6分

18.解:(Ⅰ)证明:∵PA⊥平面ABCD   ∴PA⊥BD

∵ABCD为正方形   ∴AC⊥BD

∴BD⊥平面PAC又BD在平面BPD内,

∴平面PAC⊥平面BPD      6分

(Ⅱ)解法一:在平面BCP内作BN⊥PC垂足为N,连DN,

∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

∴∠BND为二面角B―PC―D的平面角,

在△BND中,BN=DN=,BD=

∴cos∠BND =                             12分

解法二:以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴建立空间坐标系如图,在平面BCP内作BN⊥PC垂足为N连DN,

∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

∴∠BND为二面角B―PC―D的平面角                                8分

                          10分

           12分

解法三:以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴建立如图空间坐标系,作AM⊥PB于M、AN⊥PD于N,易证AM⊥平面PBC,AN⊥平面PDC,

                            10分

∵二面角B―PC―D的平面角与∠MAN互补

∴二面角B―PC―D的余弦值为                                 12分

19.解:(Ⅰ)

          4分

又∵当n = 1时,上式也成立,             6分

(Ⅱ)              8分

     ①

     ②

①-②得:

                                             12分

20.解:(Ⅰ)由MAB的中点,

AB两点的坐标分别为

M点的坐标为                                 4分

M点的直线l上:

                                                  7分

(Ⅱ)由(Ⅰ)知,不妨设椭圆的一个焦点坐标为关于直线l

上的对称点为

则有                       10分

由已知

,∴所求的椭圆的方程为                       12分

21.解:(Ⅰ)∵函数f(x)图象关于原点对称,∴对任意实数x

                            2分

                     4分

(Ⅱ)当时,图象上不存在这样的两点使结论成立               5分

假设图象上存在两点,使得过此两点处的切线互相垂直,则由

,知两点处的切线斜率分别为:

此与(*)相矛盾,故假设不成立                                   9分

(Ⅲ)证明:

在[-1,1]上是减函数,且

∴在[-1,1]上,时,

    14分