A.4 B.2 C.1 D. 查看更多

 

题目列表(包括答案和解析)

A.4          B.2          C.1          D.

查看答案和解析>>

精英家教网A.选修4-1:几何证明选讲
锐角三角形ABC内接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于点E,连接EC,求∠OEC.
B.选修4-2:矩阵与变换
曲线C1=x2+2y2=1在矩阵M=[
12
01
]的作用下变换为曲线C2,求C2的方程.
C.选修4-4:坐标系与参数方程
P为曲线C1
x=1+cosθ
y=sinθ
(θ为参数)上一点,求它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值.
D.选修4-5:不等式选讲
设n∈N*,求证:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

精英家教网A.如图,四边形ABCD内接于⊙O,弧AB=弧AD,过A点的切线交CB的延长线于E点.
求证:AB2=BE•CD.
B.已知矩阵M
2-3
1-1
所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
C.已知圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)将圆的极坐标方程化为直角坐标方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

精英家教网A.选修4-1:几何证明选讲
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
x=5cosφ
y=3sinφ
(φ为参数)的右焦点,且与直线
x=4-2t
y=3-t
(t为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

A.选修4-1:几何证明选讲
如图,直角△ABC中,∠B=90°,以BC为直径的⊙O交AC于点D,点E是AB的中点.
求证:DE是⊙O的切线.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值-1及其对应的一个特征向量为
1
-4
,点P(2,-1)在矩阵A对应的变换下得到点P′(5,1),求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρcos(θ-
π
4
)=
2
,曲线C的参数方程为
x=2cosα
y=sinα
(α为参数),求曲线C截直线l所得的弦长.
D.选修4-5:不等式选讲
已知a,b,c都是正数,且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

一、选择题

C B B A B   A A A DD    C C

二、填空题

13.                               14.  ―4                     15. 2880                     16.①③

17.解,由题意知,在甲盒中放一球概率为,在乙盒放一球的概率为   ….3分

①当n=3时,的概率为    …6分

时,有

它的概率为     ….12分

18.解: (1)解:在中  

                                                 2分

    4分

 

      

                                                       6分

 

(2)=

     12分

 

19. (法一)(1)证明:取中点,连接

       ∵△是等边三角形,∴

       又平面⊥平面

       ∴⊥平面,∴在平面内射影是

       ∵=2,,

       ∴△∽△,∴

       又°,∴°,

       ∴°,∴

       由三垂线定理知        ……….(6分)

(2)取AP的中点E及PD的中点F,连ME、CF则CFEM为平行四边形,CF平面PAD所以ME平面PAD,所以平面MPA平面PAD所以二面角M―PA―D为900.(12分)

20.解:(1)

                  2分

 

-1

(x)

-

0

+

0

-

(x)

极小值0

极大值

                               6分

 

(2)

                                         8分

 

                                                              12分

 

21.Ⅰ)由题知点的坐标分别为

于是直线的斜率为

所以直线的方程为,即为.…………………4分

 

(Ⅱ)设两点的坐标分别为

所以

于是

到直线的距离

所以.

因为,于是

所以的面积范围是.         …………………………………8分

(Ⅲ)由(Ⅱ)及,得

于是).

所以

所以为定值.               ……………………………………………12分

22.解(Ⅰ)由得,

数列{an}的通项公式为      4分

(Ⅱ)

      ①

 

      ②

①―②得

=

 

即数列的前n项和为           9分

(Ⅲ)解法1:不等式恒成立,

对于一切的恒成立

,当k>4时,由于对称轴,且而函数是增函数,不等式恒成立

即当k<4时,不等式对于一切的恒成立       14分

解法2:bn=n(2n-1),不等式恒成立,即对于一切恒成立

而k>4

恒成立,故当k>4时,不等式对于一切的恒成立 (14分)

 


同步练习册答案