某汽车运输公司.购买了一批豪华大客车投入营运.据市场分析每辆客车营运的总利润与营运时间(年)的函数关系为.则每辆客车营运多少年.其运营的年利润最大A.2 B.3 C.4 D.5 查看更多

 

题目列表(包括答案和解析)

某汽车运输公司,购买了一批豪华大客车投入运营,据市场分析每辆客车运营前n(n∈N*)年的总利润Sn(单位:万元)与n之间的关系为Sn=-(n-6)2+11.当每辆客车运营的平均利润最大时,n的值为
5
5

查看答案和解析>>

某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x的函数关系为则每辆客车营运多少年,其运营的年平均利润最大为         .

查看答案和解析>>

某汽车运输公司,购买了一批豪华大客车投入客运,据市场分析,每辆客车营运利润y(10万元)与营运年数x(x∈N)为二次函数关系(图象如下图所示),则每辆客车营运________年,其营运年平均利润最大.(    )

A.3                   B.4                  C.5                 D.6

查看答案和解析>>

某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:万元)与营运年数x(xN)为二次函数关系(如图),则每辆客车营运___________年,其营运的年平均利润最大.

  

A.3                                 B.4                                     C.5                                 D.6

查看答案和解析>>

某汽车运输公司,购买了一批豪华大巴投入客运,据市场分析,每辆客车营运的总利润(万元)与营运年数满足,则每辆客车营运多少年使其营运年平均利润最大(      )

A、3年         B、4年        C、5年        D、6年

 

查看答案和解析>>

一、选择题

C B B A B   A A A DD    C C

二、填空题

13.                               14.  ―4                     15. 2880                     16.①③

17.解,由题意知,在甲盒中放一球概率为,在乙盒放一球的概率为   ….3分

①当n=3时,的概率为    …6分

时,有

它的概率为     ….12分

18.解: (1)解:在中  

                                                 2分

    4分

 

      

                                                       6分

 

(2)=

     12分

 

19. (法一)(1)证明:取中点,连接

       ∵△是等边三角形,∴

       又平面⊥平面

       ∴⊥平面,∴在平面内射影是

       ∵=2,,

       ∴△∽△,∴

       又°,∴°,

       ∴°,∴

       由三垂线定理知        ……….(6分)

(2)取AP的中点E及PD的中点F,连ME、CF则CFEM为平行四边形,CF平面PAD所以ME平面PAD,所以平面MPA平面PAD所以二面角M―PA―D为900.(12分)

20.解:(1)

                  2分

 

-1

(x)

-

0

+

0

-

(x)

极小值0

极大值

                               6分

 

(2)

                                         8分

 

                                                              12分

 

21.Ⅰ)由题知点的坐标分别为

于是直线的斜率为

所以直线的方程为,即为.…………………4分

 

(Ⅱ)设两点的坐标分别为

所以

于是

到直线的距离

所以.

因为,于是

所以的面积范围是.         …………………………………8分

(Ⅲ)由(Ⅱ)及,得

于是).

所以

所以为定值.               ……………………………………………12分

22.解(Ⅰ)由得,

数列{an}的通项公式为      4分

(Ⅱ)

      ①

 

      ②

①―②得

=

 

即数列的前n项和为           9分

(Ⅲ)解法1:不等式恒成立,

对于一切的恒成立

,当k>4时,由于对称轴,且而函数是增函数,不等式恒成立

即当k<4时,不等式对于一切的恒成立       14分

解法2:bn=n(2n-1),不等式恒成立,即对于一切恒成立

而k>4

恒成立,故当k>4时,不等式对于一切的恒成立 (14分)

 


同步练习册答案