(Ⅱ)因为-.又... 查看更多

 

题目列表(包括答案和解析)

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>

在数学证明中,①假言推理、②三段论推理、③传递关系推理、④完全归纳推理,是经常使用的四种演绎推理,下面推理过程使用到上述推理规则中的(     )如(右图)

因为lAB,所以又因为AB//CD,所以

 所以

A. ①②③        B.②③④

C. ②③          D.①②③④

 

查看答案和解析>>

已知,

(Ⅰ)求的值;

(Ⅱ)求的值。

【解析】第一问中,因为,∴

第二问中原式=

=进而得到结论。

(Ⅰ)解:∵

……………………………………3

……………………………2

(Ⅱ) 解:原式=  ……………………2

=…………2

=

 

查看答案和解析>>

下面是用“三段论”形式写出的演绎推理:因为指数函数y=ax(a>0,a≠1)是减函数(大提前),又y=2x是指数函数(小前提),所以y=2x是减函数(结论),其结论错误的原因是(  )

查看答案和解析>>

请阅读下列材料:对命题“若两个正实数a1,a2满足a12+a22=1,那么a1+a2
2
.”证明如下:构造函数f(x)=(x-a12+(x-a22,因为对一切实数x,恒有f(x)≥0,又f(x)=2x2-2(a1+a2)x+1,从而得4(a1+a22-8≤0,所以a1+a2
2
.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你可以构造函数g(x)=
 
,进一步能得到的结论为
 
.(不必证明)

查看答案和解析>>


同步练习册答案