题目列表(包括答案和解析)
在棱长为
的正方体
中,
是线段
的中点,
.
(1) 求证:
^
;
(2) 求证:
//平面
;
(3) 求三棱锥
的表面积.
![]()
【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用
,得到结论,第二问中,先判定
为平行四边形,然后
,可知结论成立。
第三问中,
是边长为
的正三角形,其面积为
,
因为
平面
,所以
,
所以
是直角三角形,其面积为
,
同理
的面积为
,
面积为
. 所以三棱锥
的表面积为
.
解: (1)证明:根据正方体的性质
,
因为
,
所以
,又
,所以
,
,
所以
^
.
………………4分
(2)证明:连接
,因为
,
所以
为平行四边形,因此
,
由于
是线段
的中点,所以
, …………6分
因为![]()
面
,![]()
平面
,所以
∥平面
. ……………8分
(3)
是边长为
的正三角形,其面积为
,
因为
平面
,所以
,
所以
是直角三角形,其面积为
,
同理
的面积为
,
……………………10分
面积为
. 所以三棱锥
的表面积为
![]()
如图,三棱锥
中,侧面
底面
,
,且
,
.(Ⅰ)求证:
平面
;
(Ⅱ)若
为侧棱PB的中点,求直线AE与底面
所成角的正弦值.
![]()
【解析】第一问中,利用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证
平面ABC,又EH//PO,所以EH平面
ABC ,
则
为直线AE与底面ABC 所成角,
![]()
解
(Ⅰ) 证明:由用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以![]()
………………………………………………6分
(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,
因为PA=PC,所以PO⊥AC,同(Ⅰ)易证
平面ABC,
又EH//PO,所以EH平面
ABC ,
则
为直线AE与底面ABC 所成角,
且
………………………………………10分
又PO=1/2AC=
,也所以有EH=1/2PO=
,
由(Ⅰ)已证
平面PBC,所以
,即
,
故
,
于是![]()
所以直线AE与底面ABC 所成角的正弦值为![]()
![]()
在
中,满足
,
是
边上的一点.
(Ⅰ)若
,求向量
与向量
夹角的正弦值;
(Ⅱ)若
,
=m (m为正常数) 且
是
边上的三等分点.,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一问中,利用向量的数量积设向量
与向量
的夹角为
,则![]()
令
=
,得
,又
,则
为所求
第二问因为
,
=m所以
,![]()
(1)当
时,则
=
(2)当
时,则
=![]()
第三问中,解:设
,因为![]()
,
;
所以
即
于是
得![]()
从而![]()
运用三角函数求解。
(Ⅰ)解:设向量
与向量
的夹角为
,则![]()
令
=
,得
,又
,则
为所求……………2分
(Ⅱ)解:因为
,
=m所以
,![]()
(1)当
时,则
=
;-2分
(2)当
时,则
=
;--2分
(Ⅲ)解:设
,因为![]()
,
;
所以
即
于是
得![]()
从而
---2分
=
=![]()
=
…………………………………2分
令
,
则
,则函数
,在
递减,在
上递增,所以
从而当
时,![]()
在数学证明中,①假言推理、②三段论推理、③传递关系推理、④完全归纳推理,是经常使用的四种演绎推理,下面推理过程使用到上述推理规则中的( )如(右图)
![]()
因为l
AB,所以
又因为AB//CD,所以![]()
所以![]()
A. ①②③ B.②③④
C. ②③ D.①②③④
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com