题目列表(包括答案和解析)
(本小题满分14分)已知函数
满足:
;(1)分别写出
时
的解析式
和
时
的解析式
;并猜想
时
的解析式
(用
和
表示)(不必证明)(2分)(2)当![]()
时,![]()
的图象上有点列
和点列
,线段
与线段
的交点
,求点
的坐标
;(4分)
(3)在前面(1)(2)的基础上,请你提出一个点列
的问题,并进行研究,并写下你研究的过程 (8分)
(本小题满分14分)
已知函数f(x)=
,g(x)=alnx,a
R。
若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值
(a)的解析式;
对(2)中的
(a),证明:当a
(0,+
)时,
(a)
1.
(本小题满分14分)
已知函数f(x)=
,g(x)=alnx,a
R。
若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值
(a)的解析式;
对(2)中的
(a),证明:当a
(0,+
)时,
(a)
1.
(本小题满分14分)
已知二次函数
满足:
,
,且该函数的最小值为1.
⑴ 求此二次函数
的解析式;
⑵ 若函数
的定义域为
=
.(其中
). 问是否存在这样的两个实数
,使得函数
的值域也为
?若存在,求出
的值;若不存在,请说明理由.
(本小题满分14分)
已知
有![]()
(1)判断
的奇偶性;
(2)若
时,
证明:
在
上为增函数;
(3)在条件(2)下,若
,解不等式:![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com