A.2 B. C.-2 D.4 查看更多

 

题目列表(包括答案和解析)

(-2)4+(-2)-3+(-)-3-(-)3的值为

[  ]

A.

B.8

C.-24

D.-8

查看答案和解析>>

α∈{-2,-1,-,1,2,3},则使f(x)=xα为奇函数且在(0,+∞)上单调递减的α的值的个数是(  )

A.1            B.2

C.3            D.4

查看答案和解析>>

设α∈{-2,-1,-,,1,2,3},已知幂函数f(x)=xα是偶函数,且在区间(0,+∞)上是减函数,则满足条件的α值的个数是(  )

A.1  B.2  C.3  D.4

查看答案和解析>>

(-2,-4)-(3,-6)=

[  ]

A.(-2,0)

B.(0,0)

C.(2,0)

D.(-5,2)

查看答案和解析>>

0.4-2.5,()0.2的大小关系为

[  ]
A.

()0.2<0.4-2.5

B.

<0.4-2.5<()0.2

C.

0.4-2.5<()0.2

D.

()0.2<0.4-2.5

查看答案和解析>>

1.   2. 1  3. 4  4.  5. 1,  6.  90° 7. 13

8.   9.   10. 4  11. y=2x  12. 9

13. D  14. B  15. D  16. C

17. 解: (1)y=2sin(2x-),  3’     最小正周期T=    5’

(2) ……8’

∴函数y的值域为[-1,2]                           ……………10’

18. (1)解  如图所示,在平面ABCD内,过CCPDE,交直线ADP,则∠ACP(或补角)为异面直线ACDE所成的角  

在△ACP中,

易得AC=aCP=DE=a,AP=a

由余弦定理得cosACP=

ACDE所成角为arccos 

另法(向量法)  如图建立坐标系,则

ACDE所成角为arccos 

 (2)解  ∵∠ADE=∠ADF,∴AD在平面BEDF内的射影在∠EDF的平分线上  如下图所示   

又∵BEDF为菱形,∴DB′为∠EDF的平分线,

故直线AD与平面BEDF所成的角为∠ADB

在Rt△BAD中,AD=aAB′=a,BD=a

则cosADB′=

AD与平面BEDF所成的角是arccos 

另法(向量法) 

∵∠ADE=∠ADF,∴AD在平面BEDF内的射影在∠EDF的平分线上  如下图所示   

又∵BEDF为菱形,∴DB′为∠EDF的平分线,

故直线AD与平面BEDF所成的角为∠ADB′,

如图建立坐标系,则

AD与平面BEDF所成的角是arccos 

19.  (1)解为等差数列,

     ……………………………………………………2分

解得 ……………………………4分

 ………………………………………………………………5分

 ……………………………………………………………6分

   (2) ………………………………………………6分

 …………8分

,知上单减,在上单增,

…………………………………………10分

∴当n = 5时,取最大值为 ………………12分

20. 解:(1)∵,∴,即

,∴

   (2),  

  当

时,

     当时,∵,∴这样的不存在。

     当,即时,,这样的不存在。

     综上得, .

21. 解:(1)Q为PN的中点且GQ⊥PN

       GQ为PN的中垂线|PG|=|GN|                                        

              ∴|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长,半焦距,∴短半轴长b=2,∴点G的轨迹方程是

   (2)因为,所以四边形OASB为平行四边形

       若存在l使得||=||,则四边形OASB为矩形

       若l的斜率不存在,直线l的方程为x=2,由

       矛盾,故l的斜率存在.   

       设l的方程为

      

          ①

      

          ②                      

       把①、②代入

∴存在直线使得四边形OASB的对角线相等.

 


同步练习册答案