(Ⅱ)若数列的前项和为.试求. 查看更多

 

题目列表(包括答案和解析)

 

设数列的前项和为,如果为常数,则称数列为“科比数列”.

(Ⅰ)已知等差数列的首项为1,公差不为零,若为“科比数列”,求的通项公式;

(Ⅱ)设数列的各项都是正数,前项和为,若对任意 都成立,试推断数列是否为“科比数列”?并说明理由.

 

 

 

 

 

 

 

查看答案和解析>>

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

 设等差数列的前项和为

(Ⅰ)求数列的通项公式;

(Ⅱ)设,若,试比较的大小.

 

 

 

 

查看答案和解析>>

是数列的前项和,对任意都有成立, (其中是常数).

(1)当时,求

(2)当时,

①若,求数列的通项公式;

②设数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“数列”.

如果,试问:是否存在数列为“数列”,使得对任意,都有

,且.若存在,求数列的首项的所

有取值构成的集合;若不存在,说明理由.

 

查看答案和解析>>

是数列的前项和,对任意都有成立, (其中是常数).
(1)当时,求
(2)当时,
①若,求数列的通项公式;
②设数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“数列”.
如果,试问:是否存在数列为“数列”,使得对任意,都有
,且.若存在,求数列的首项的所
有取值构成的集合;若不存在,说明理由.

查看答案和解析>>


同步练习册答案