(Ⅰ)设椭圆的方程为. ---------- 1分 查看更多

 

题目列表(包括答案和解析)

设椭圆的左,右两个焦点分别为,短轴的上端点为,短轴上的两个三等分点为,且为正方形。

 (1)求椭圆的离心率;

(2)若过点作此正方形的外接圆的切线在轴上的一个截距为,求此椭圆方程。

 

 

 

查看答案和解析>>

设椭圆的左,右两个焦点分别为F1,F2,短轴的上端点为B,短轴上的两个三等分点为P,Q,且F1PF2Q为正方形,
(1)求椭圆的离心率;
(2)若过点B作此正方形的外接圆的切线在x轴上的一个截距为,求此椭圆方程。

查看答案和解析>>

设椭圆的一个顶点与抛物线的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率,且过椭圆右焦点F2的直线l与椭圆C交于M、N两点。
(1)求椭圆C的方程;
(2)是否存在直线l,使得,若存在,求出直线l的方程;若不存在,说明理由。
(3)若AB是椭圆C经过原点O的弦,MN∥AB,求证:为定值。

查看答案和解析>>

已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点。

(1)求双曲线的方程;

(2)若直线与双曲线恒有两个不同的交点A、B,且(O为原点),求的取值范围;

(3)设分别是的两条渐近线上的点,且点M在上,,求的面积。

查看答案和解析>>

设椭圆C1的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点)。如图,若抛物线C2与y轴的交点为B,且经过F1,F2两点。

1. 求抛物线C2的方程;

2.设M,N为抛物线C2上的动点,过点N作抛物线C2的切线交椭圆C1于点P、Q两点,求△MPQ面积的最大值。

 

 

 

查看答案和解析>>


同步练习册答案