题目列表(包括答案和解析)
已知各项都不为零的数列
的前n项和为
,
,向量
,其中
N*,且
∥
.
(Ⅰ)求数列
的通项公式及
;
(Ⅱ)若数列
的前n项和为
,且
(其中
是首项
,第四项为
的等比数列的公比),求证:
.
【解析】本试题主要考查了数列的通项公式和前n项和公式的运用。
(1)因为
,对n=1,
分别求解通项公式,然后合并。利用
,求解![]()
(2)利用
![]()
裂项后求和得到结论。
解:(1)
……1分
当
时,
……2分
(
)……5分
……7分
……9分
证明:当
时,
![]()
当
时,![]()
数列
首项
,前
项和
满足等式
(常数
,
……)
(1)求证:
为等比数列;
(2)设数列
的公比为
,作数列
使
(
……),求数列
的通项公式.
(3)设
,求数列
的前
项和
.
【解析】第一问利用由
得![]()
两式相减得![]()
故
时,![]()
从而
又
即
,而![]()
从而
故![]()
第二问中,
又
故
为等比数列,通项公式为![]()
第三问中,![]()
两边同乘以![]()
利用错位相减法得到和。
(1)由
得![]()
两式相减得![]()
故
时,![]()
从而
………………3分
又
即
,而![]()
从而
故![]()
对任意
,
为常数,即
为等比数列………………5分
(2)
……………………7分
又
故
为等比数列,通项公式为
………………9分
(3)![]()
两边同乘以![]()
………………11分
两式相减得![]()
![]()
已知数列
的前n项和
,数列
有
,
(1)求
的通项;
(2)若
,求数列
的前n项和
.
【解析】第一问中,利用当n=1时,![]()
当
时,![]()
得到通项公式
第二问中,∵
∴
∴数列
是以2为首项,2为公比的等比数列,利用错位相减法得到。
解:(1)当n=1时,
……………………1分
当
时,
……4分
又![]()
∴
……………………5分
(2)∵
∴
∴
……………………7分
又∵
,
∴ ![]()
∴数列
是以2为首项,2为公比的等比数列,
∴
……………………9分
∴
∴
①
②
①-②得:![]()
∴![]()
某市投资甲、乙两个工厂,2011年两工厂的产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第
年比上一年增加
万吨,记2011年为第一年,甲、乙两工厂第
年的年产量分别为
万吨和
万吨.
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底,其中哪一个工厂被另一个工厂兼并.
【解析】本试题主要考查数列的通项公式的运用。
第一问由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98
第二问,考查等差数列与等比数列的综合,考查用数列解决实际问题,其步骤是建立数列模型,进行计算得出结果,再反馈到实际中去解决问题.由于比较两个工厂的产量时两个函数的形式较特殊,不易求解,故采取了列举法,数据列举时作表格比较简捷.
解:(Ⅰ)由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分
(Ⅱ)由于n,各年的产量如下表
n 1 2 3 4 5 6 7 8
an 100 110 120 130 140 150 160 170
bn 100 102 106 114 130 162 226 354
2015年底甲工厂将被乙工厂兼并
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com