题目列表(包括答案和解析)
已知函数
,
。
(Ⅰ)求
在区间
的最小值;
(Ⅱ)求证:若
,则不等式
≥
对于任意的
恒成立;
(Ⅲ)求证:若
,则不等式
≥
对于任意
的![]()
恒成立。
(本小题满分12分)已知函数
,
.
(1)求
在区间
的最小值; (2)求证:若
,则不等式
≥
对于任意的
恒成立; (3)求证:若
,则不等式
≥
对于任意的
恒成立.
若定义在区间D上的函数
对于区间D上的任意两个值
、
总有以下不等式
成立,则称函数
为区间D上的凸函数 .
(1)证明:定义在R上的二次函数
是凸函数;
(2)设
,并且
时,
恒成立,求实数
的取值范围,并判断函数
能否成为
上的凸函数;
(3)定义在整数集Z上的函数
满足:①对任意的
,
;②
,
. 试求
的解析式;并判断所求的函数
是不是R上的凸函数说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com