因为三个侧面ACD.ABD.ABC两两垂直.易证AB平面ACD, 查看更多

 

题目列表(包括答案和解析)

已知一几何体的三视图如图,正视图和侧视图都是矩形,俯视图为正方形,在该几何体上任意选择5个顶点,它们可能是如下各种几何形体的5个顶点,这些几何形体是(写出所有正确结论的编号)
①③④
①③④
.(其中a≠b)
①每个侧面都是直角三角形的四棱锥;
②正四棱锥;
③三个侧面均为等腰三角形与三个侧面均为直角三角形的两个三棱锥的简单组合体
④有三个侧面为直角三角形,另一个侧面为等腰三角形的四棱锥.

查看答案和解析>>

已知平面几何中有勾股定理,若直角三角形ABC的两边AB、AC互相垂直,则三角形的三边长之间满足关系AB2+AC2=BC2,类比上述定理,若三棱锥S-ABC的三个侧面SAB、SAC、SBC两两互相垂直,则其面积之间有何关系        

 

 

查看答案和解析>>

15、在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则
S△ABC2+S△ACD2+S△ADB2=S△BCD2
.”

查看答案和解析>>

3、在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则|AB|2+|AC|2=|BC|2”拓展到空间,类比平面几何的勾股定理,“设三棱锥A-BCD的三个侧面ABC、ACD、ADB 两两相互垂直,则可得”(  )

查看答案和解析>>

13、类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长满足关系:AB2+AC2=BC2.若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积满足的关系为
SBCD2=SABC2+SACD2+SADB2

查看答案和解析>>


同步练习册答案