(3)求数列{}的前n项和Sn . 福建省上杭一中2008――2009学年度第二学期4月份月考 查看更多

 

题目列表(包括答案和解析)

(08年德州市质检文)(12分)已知数列

   (1)求数列的前三项:

   (2)是否存在一个实数,使得数列为等差数列?若存在,求出的值;若不存在,说明理由;

   (3)求数列的前n项和Sn.

查看答案和解析>>

在1和100之间插入个实数,使得这(n+2)个数构成递增的等比数列,将这(n+2)个数的积记作Tn,n∈N*
(1)求数列{Tn}的通项公式;
(2)设bn=2lgTn-3,求数列的前n项和Sn

查看答案和解析>>

设数列{an}满足an=2an-1+1(n≥2),且a1=1,bn=log2(an+1).
(1)证明:数列{an+1}为等比数列;
(2)求数列{an}及{bn}的通项公式;
(3)求数列的前n项和Sn

查看答案和解析>>

设an是等差数列,bn是各项都为正数的等比数列,且a1=b1=1,a2+b3=a3+b2=7.
(1)求an,bn的通项公式;
(2)记cn=an-2010,n∈N*,An为数列cn的前n项和,当n为多少时An取得最大值或最小值?
(3)求数列的前n项和Sn

查看答案和解析>>

在1和100之间插入个实数,使得这(n+2)个数构成递增的等比数列,将这(n+2)个数的积记作Tn,n∈N*
(1)求数列{Tn}的通项公式;
(2)设bn=2lgTn-3,求数列数学公式的前n项和Sn

查看答案和解析>>

一、选择题

1

2

3

4

5

6

7

8

9

10

11

12

A

C

B

D

A

B

A

B

B

A

C

A

二、填空题:

13. 256015     14.12        15.       16.①,④

三、解答题:17.解:设f(x)的二次项系数为m,其图象上两点为(1-x,)、B(1+x,)因为,所以,由x的任意性得f(x)的图象关于直线x=1对称,若m>0,则x≥1时,f(x)是增函数,若m<0,则x≥1时,f(x)是减函数.

  ∵ 

  ∴ 当时,

  ∵ , ∴ 

  当时,同理可得

  综上:的解集是当时,为

  当时,为,或

18.解:(1)由直方图知,成绩在内的人数为:(人)

所以该班成绩良好的人数为27人.

   (2)由直方图知,成绩在的人数为人,

设为;成绩在 的人数为人,设为.

时,有3种情况;

时,有6种情况;

分别在内时,

 

 

A

B

C

D

x

xA

xB

xC

xD

y

yA

yB

yC

yD

z

zA

zB

zC

zD

共有12种情况.

所以基本事件总数为21种,事件“”所包含的基本事件个数有12种.

∴P()=              

19.解析:(1)取中点E,连结ME、

  ∴ ,MCEC. ∴ MC. ∴ ,M,C,N四点共面.

  (2)连结BD,则BD是在平面ABCD内的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD.

  ∴ ∠CBD+∠BCM=90°.  ∴ MC⊥BD.  ∴ 

  (3)连结,由是正方形,知

  ∵ ⊥MC, ∴ ⊥平面

  ∴ 平面⊥平面

20.解析:(1).∵ x≥1. ∴ 

  当x≥1时,是增函数,其最小值为

  ∴ a<0(a=0时也符合题意). ∴ a≤0.

(2),即27-6a-3=0, ∴ a=4.

  ∴ 有极大值点,极小值点

  此时f(x)在上时减函数,在,+上是增函数.

∴ f(x)在上的最小值是,最大值是,(因).

21.解析:(1)证明:将,消去x,得

   ①由直线l与椭圆相交于两个不同的点,得

所以    (2)解:设由①,得     因为 

所以,

消去y2,得 化简,得 

若F是椭圆的一个焦点,则c=1,b2=a2-1

代入上式,解得    所以,椭圆的方程为    

22.解析:解:(1)由   

(2)假设存在实数t,使得为等差数列。则

存在t=1,使得数列为等差数列。

(3)由(1)、(2)知:为等差数列。

 

 


同步练习册答案