(2)若.求b的大小. 查看更多

 

题目列表(包括答案和解析)

若关于的不等式有解,且解集的区间长不超过5个单位,满足上述要求的的最大值为、最小值为,则等于                   (    )

   A.1               B.24            C.25             D.26

查看答案和解析>>

若函数f(x)x2ax6a有两个零点,且零点间的距离不超过5个单位,满足上述要求的a的最大值为Ma、最小值为ma,则Mama等于

[  ]
A.

1

B.

24

C.

25

D.

26

查看答案和解析>>

6个大小相同的小球分别标有数字1,1,1,2,2,2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为m,n,记S=m+n.
(I)设“S=2”为事件A,求事件A发生的概率;
(II)记Smax为S的最大值,Smin为S的最小值,若a∈[0,Smax],b∈[Smin,3],设“x2+2ax+b2≥0恒成立”为事件B,求事件B发生的概率.

查看答案和解析>>

(本小题满分12分)
如下图,O1(– 2,0),O2(2,0),圆O1与圆O2的半径都是1,
 
 
 

(1)   过动点P分别作圆O1、圆O2的切线PMPN(MN分别为切点),使得.求动点P的轨迹方程;
(2)   若直线交圆O2AB,又点C(3,1),当m取何值时,△ABC的面积最大?

查看答案和解析>>

(本小题满分13分)

某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为ab万元,则农民购买电视机获得的补贴分别为万元(m>0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.

(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;

(2)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?

 

 

 

查看答案和解析>>

 

一、选择题:

1,3,5

二、填空题

13.       14.190     15.②④            16.

三、解答题

17.(1)

                            …………4分

∵A为锐角,∴,∴

∴当时,                           …………6分

   (2)由题意知,∴

又∵,∴,∴,              …………8分

又∵,∴,                                …………9分

由正弦定理         …………12分

18.解:(I)由函数

                       …………2分

                              …………4分

                                                   …………6分

   (II)由

                            …………8分

,                                             …………10分

                                                  

故要使方程           …………12分

19.(I)连接BD,则AC⊥BD,

∵D1D⊥地面ABCD,∴AC⊥D1D

∴AC⊥平面BB1D1D,

∵D1P平面BB1D1D,∴D1P⊥AC.…………4分

   (II)解:设连D1O,PO,

∵D1A=D1C,∴D1O⊥AC,同理PO⊥AC,

又∵D1O∩PO=0,

∴AC⊥平面POD1 ………………6分

∵AB=2,∠ABC=60°,

∴AO=CO=1,BO=DO=

∴D1O=

                        …………9分

,                        …………10分

    …………12分

20.解:(I)当 ;                       …………1分

                                                            …………4分

验证

                     …………5分

   (II)该商场预计销售该商品的月利润为

                                                            …………7分

(舍去)……9分

综上5月份的月利润最大是3125元。                           …………12分

21.解:(I)∵|OA1|=|OA2|=|OA3|=2,                             …………1分

∴外接圆C以原点O为圆心,线段OA1为半径,故其方程为……3分

∴所求椭圆C1的方程是                            …………6分

   (II)直线PQ与圆C相切。

证明:设

 

 

 

∴直线OQ的方程为                            …………8分

因此,点Q的坐标为

                                                            …………10分

综上,当2时,OP⊥PQ,故直线PQ始终与圆C相切。        …………12分

22.解:(I)由题意知:                         …………2分

解得

                                         …………4分

   (II)

,                  …………6分

                                    …………8分

故数列             …………10分

   (III)若

从而

                           …………11分

即数列                                         …………13分

                             …………14分