2008年中国北京奥运会吉祥物由5个“中国福娃 组成.分别叫贝贝.晶晶.欢欢.迎迎.妮妮.现有8个相同的盒子.每个盒子中放一个福娃.每种福娃的数量如下表:福娃名称贝贝晶晶欢欢迎迎妮妮数 量22211从中随机地选取5只.(1)求选取的5只福娃恰好组成完整“奥运会吉祥物 的概率,(2)求选取的5只福娃离组成完整“奥运会吉祥物 至少差两种福娃的概率. 查看更多

 

题目列表(包括答案和解析)

本题满分12分)

    2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮(含义:“北京欢迎你”)。现有8个相同的盒子,每个盒子中有一只福娃,每种福娃的数量如下表:

福娃名称

贝贝

晶晶

欢欢

迎迎

妮妮

数    量

2

2

2

1

1

从中随机地选取5只。

(1)求选取的5只恰好组成完整“奥运会吉祥物”的概率;

(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;……。设ξ表示所得的分数,求ξ的分布列和期望值。(结果保留一位小数)

 

查看答案和解析>>

(本小题满分12分)

2008年北京奥运会乒乓球比赛将产生男子单打、女子单打、男子团体、女子团体共四枚金牌,保守估计中国乒乓球男队获得每枚金牌的概率均为,中国乒乓球女队获得每枚金牌的概率均为.

(1)求按此估计中国乒乓球女队比中国乒乓球男队多获得一枚金牌的概率;

(2)记中国乒乓球队获得金牌的数为,按此估计的分布列和数学期望

查看答案和解析>>

(本小题满分12分)
2008年北京奥运会乒乓球比赛将产生男子单打、女子单打、男子团体、女子团体共四枚金牌,保守估计中国乒乓球男队获得每枚金牌的概率均为,中国乒乓球女队获得每枚金牌的概率均为.
(1)求按此估计中国乒乓球女队比中国乒乓球男队多获得一枚金牌的概率;
(2)记中国乒乓球队获得金牌的数为,按此估计的分布列和数学期望

查看答案和解析>>

(本题满分12分)2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:

福娃名称

贝贝

晶晶

欢欢

迎迎

妮妮

数量

1

1

1

2

3

从中随机地选取5只.

(1)求选取的5只恰好组成完整“奥运吉祥物”的概率;

(2)若完整地选取奥运会吉祥物记10分,若选出的5只中仅差一种记8分,差两种记6分,以此类推. 设ξ表示所得的分数,求ξ的分布列及数学期望.

 

查看答案和解析>>

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

A

A

D

B

C

C

B

C

B

 

 

13.    14. 2    15.    16. ①②③

 

17. 解:(1)由得:,             2分

即b = c = 1-a,        4分

时,

  因为,有1-a > 0,,得a = -1

 故                      8分

(2)∵是奇函数,且将的图象先向右平移个单位,再向上平移1个单位,可以得到的图象,∴是满足条件的一个平移向量.        12分

18. 解:(1)由等可能事件的概率意义及概率计算公式得;   5分

 (2)设选取的5只福娃恰好距离组成完整“奥运会吉祥物”差两种福娃记为事件B,

依题意可知,至少差两种福娃,只能是差两种福娃,则

6ec8aac122bd4f6e        11分

故选取的5只福娃距离组成完整“奥运会吉祥物”至少差两种福娃的概率为  12分

 

19.     解:(1)

又平面平面

………………4分

(2)

∴点到平面的距离即求点到平面的距离

   取中点,连结

为等边三角形

                                                               

又由(1)知

  ∴点到平面的距离即点到平面的距离为………………8分

   (3)二面角即二面角

   过,垂足为点,连结

由(2)及三垂线定理知

为二面角的平面角

  

   …12分

解法2:(1)如图,取中点,连结

为等边三角形

又∵平面平面   

建立空间直角坐标系,则有

,

………………4分

(2)设平面的一个法向量为

∴点到平面的距离即求点到平面的距离

………………………………8分

(3)平面的一个法向量为

设平面的一个法向量为

∴二面角的大小为…………………………………12分

 

 

20. 解:(1)由题意知

当n=1时,

两式相减得

整理得:)       ………………………………………………(4分)

∴数列{an}是为首项,2为公比的等比数列.

            ……………………………………(5分)

(2)

           …………………………………………………………(6分)

     …… ①

     …… ②

①-②得         ……………(9分)

                   ………………………(11分)

          ………………………………………………………(12分)

 

21. 解:(1)由,∴ 

,则,  

   

同理,有,∴为方程的两根

. 设,则     ①

  ②

由①、②消去得点的轨迹方程为.   ………………………………6分

(2)

∴当时,.        ………………………………12分

 

 

22. 解:(1)

………………………………………………………………………2分

的单调递增区间为,单调递减区间为…………5分

(2)由题

……………………6分

……………………………………………7分

 

 

 

 

 

 

 

 

 

此时,,有一个交点;…………………………9分

时,

   

  

 

 

  

,

∴当时,有一个交点;

时,有两个交点;

      当时,,有一个交点.………………………13分

综上可知,当时,有一个交点;

          当时,有两个交点.…………………………………14分

 

 

 


同步练习册答案