证:令,令时 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)若函数在[1,2]上是减函数,求实数a的取值范围;

(Ⅱ)令是否存在实数a,当(e是自然常数)时,函数 的最小值是3,若存在,求出a的值;若不存在,说明理由;

(Ⅲ)当时,证明:

 

查看答案和解析>>

已知函数.

(Ⅰ)若函数在[1,2]上是减函数,求实数的取值范围;

(Ⅱ)令,是否存在实数,当是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;

(Ⅲ)当时,证明:

 

查看答案和解析>>

已知函数.

(Ⅰ)若函数在[1,2]上是减函数,求实数的取值范围;

(Ⅱ)令,是否存在实数,当是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;

(Ⅲ)当时,证明:

 

查看答案和解析>>

已知函数f(x)=ax-lnx,g(x)=
lnx
x
,它们的定义域都是(0,e],其中e≈2.718,a∈R
( I)当a=1时,求函数f(x)的单调区间;
( II)当a=1时,对任意x1,x2∈(0,e],求证:f(x1)>g(x2)+
17
27

( III)令h(x)=f(x)-g(x)•x,问是否存在实数a使得h(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

已知函数f(x)=lnx,其导函数为f′(x),令φ(x)=f′(x).
(1)设g(x)=f(x+a)+φ(x+a),求函数g(x)的极值;
(2)设Sn=
n
k=1
φ(1+
k
n
),Tn=
n
k=1
φ(1+
k-1
n
),n∈N*

(i)求证:
Sn
n
<ln2

(ii)是否存在正整数n0,使得当n>n0时,都有0<
Sn+Tn
2n
-ln2<
1
8040
成立?若存在,求出一个满足条件的
n0的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案