16. 查看更多

 

题目列表(包括答案和解析)

16、16、如图,在正方体ABCD-A1B1C1D1中,M、N分别是棱C1D1、C1C的中点.以下四个结论:
①直线AM与直线CC1相交;
②直线AM与直线BN平行;
③直线AM与直线DD1异面;
④直线BN与直线MB1异面.
其中正确结论的序号为
③④

(注:把你认为正确的结论序号都填上)

查看答案和解析>>

16π3
化为2kπ+α(0≤α<2kπ,k∈Z)的形式为
 

查看答案和解析>>

16π
3
化成α+2kπ(0≤α<2π,k∈Z)的形式是(  )

查看答案和解析>>

①16的4次方根是2;
416
的运算结果是±2;
③当n为大于1的奇数时,
na
对任意a∈R都有意义;
④当n为大于1的偶数时,
na
只有当a≥0时才有意义.
其中正确的序号是
③④
③④

查看答案和解析>>

(16分)有如下结论:“圆上一点处的切线方程为”,类比也有结论:“椭圆处的切线方程为”,过椭圆C:的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.

(1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积

查看答案和解析>>

 

19.解:(1)平面ABC,AB平面ABC,∵AB.

平面,且AB平面,∴

平面.                                     

(2)BC∥,∴或其补角就是异面直线与BC所成的角.

由(1)知又AC=2,∴AB=BC=,∴.

中,由余弦定理知cos

=,即异面直线与BC所成的角的大小为      

 

(3)过点D作于E,连接CE,由三垂线定理知,故是二面角的平面角,

,∴E为的中点,∴,又,由

,在RtCDE中,sin,所以二面角正弦值的大小为   

20.解:(1)因,故可得直线方程为:

(2),用数学归纳法可证.

(3)

所以

21.解:(1)∵ 函数是R上的奇函数    ∴    ∴ ,由的任意性知∵ 函数处有极值,又

是关于的方程的根,即

   ∴  ②(4分)由①、②解

 

(2)由(1)知

列表如下:

 

1

(1,3)

3

 

 

+

0

0

+

 

增函数

极大值1

减函数

极小值

增函数

9

上有最大值9,最小值

∵ 任意的都有,即

的取值范围是

22.(1)

(2)由

           ①

设C,CD中点为M,则有

,又A(0,-1)且

(此时)      ②

将②代入①得,即

综上可得

 

 


同步练习册答案