(3)O为坐标原点.∆OPn-1Pn的面积为Sn.求(S1+S2+S3+-+Sn). 查看更多

 

题目列表(包括答案和解析)

已知A(3,0),B(0,
3
)
,O为坐标原点,点C在第一象限内,且∠AOC=60°,设
OC
=
OA
OB
 (λ∈R)
,则λ等于(  )
A、
3
3
B、
3
C、
1
3
D、3

查看答案和解析>>

已知A(-3,0)B(0,
3
)
,O为坐标原点,C在第二象限,且∠AOC=30°,
OC
OA
+
OB
,则实数λ的值为
 

查看答案和解析>>

(2012•闵行区一模)设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0),R1,R2是它实轴的两个端点,l是其虚轴的一个端点.已知其一条渐近线的一个方向向量是(1,
3
),△lR1R2的面积是
3
,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
OA
OB

(1)求双曲线C的方程;
(2)求点P(k,m)的轨迹方程,并指明是何种曲线.

查看答案和解析>>

若点 P(x,y)满足线性约束条件
3
x-y≤0
x-
3
y+2≥0
y≥0
点A(3,
3
)
,O为坐标原点,则
OA
OP
的最大值
6
6

查看答案和解析>>

已知两点A(1,0),B(1,
3
)
,O为坐标原点,点C在第二象限,且∠AOC=
6
,设
OC
=-2
OA
OB
,(λ∈R)
,则λ等于(  )
A、-
1
2
B、
1
2
C、-1
D、1

查看答案和解析>>

 

19.解:(1)平面ABC,AB平面ABC,∵AB.

平面,且AB平面,∴

平面.                                     

(2)BC∥,∴或其补角就是异面直线与BC所成的角.

由(1)知又AC=2,∴AB=BC=,∴.

中,由余弦定理知cos

=,即异面直线与BC所成的角的大小为      

 

(3)过点D作于E,连接CE,由三垂线定理知,故是二面角的平面角,

,∴E为的中点,∴,又,由

,在RtCDE中,sin,所以二面角正弦值的大小为   

20.解:(1)因,故可得直线方程为:

(2),用数学归纳法可证.

(3)

所以

21.解:(1)∵ 函数是R上的奇函数    ∴    ∴ ,由的任意性知∵ 函数处有极值,又

是关于的方程的根,即

   ∴  ②(4分)由①、②解

 

(2)由(1)知

列表如下:

 

1

(1,3)

3

 

 

+

0

0

+

 

增函数

极大值1

减函数

极小值

增函数

9

上有最大值9,最小值

∵ 任意的都有,即

的取值范围是

22.(1)

(2)由

           ①

设C,CD中点为M,则有

,又A(0,-1)且

(此时)      ②

将②代入①得,即

综上可得

 

 


同步练习册答案