(2)直线与双曲线交于不同的两点C.D.且C.D都在以A为圆心的同一个圆上.求m的取值范围. 西工大附中高2009届第二次模拟考试 查看更多

 

题目列表(包括答案和解析)

双曲线C与椭圆有相同的焦点,直线为C的一条渐近线.

   (1)求双曲线C的方程;

   (2)过点P(0,4)的直线l交双曲线C于A、B两点,交x轴于Q点(Q点与C的顶点不重合),当时,求Q点的坐标.

查看答案和解析>>

双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.

(Ⅰ)求双曲线C的方程;

(Ⅱ)过点P(0,4)的直线l,交双曲线C于A、B两点,交x轴于Q点(Q点与C的顶点不重合).当12,且λ12=-时,求Q点的坐标.

查看答案和解析>>

双曲线C:=1(a>0,b>0)的离心率为2,焦点到双曲线C的渐近线的距离为.点P的坐标为(0,-2),过P的直线l与双曲线C交于不同的两点M、N.

(1)若PM=2PN,求直线l的方程;

(2)设O为坐标原点,求的取值范围.

查看答案和解析>>

设双曲线C:
x2
a2
-y2
=1(a>0)与直线l:x+y=1相交于两个不同的点A、B.
(Ⅰ)求双曲线C的离心率e的取值范围:
(Ⅱ)设直线l与y轴的交点为P,且
PA
=
5
12
PB
.求a的值.

查看答案和解析>>

设双曲线
x2
a2
-
y2
b2
=1
的离心率e=
2
3
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求双曲线方程;
(2)直线y=kx+5(k≠0)与双曲线交于不同的两点C、D,且C、D两点都在以A为圆心的同一个圆上,求k值.

查看答案和解析>>

 

19.解:(1)平面ABC,AB平面ABC,∵AB.

平面,且AB平面,∴

平面.                                     

(2)BC∥,∴或其补角就是异面直线与BC所成的角.

由(1)知又AC=2,∴AB=BC=,∴.

中,由余弦定理知cos

=,即异面直线与BC所成的角的大小为      

 

(3)过点D作于E,连接CE,由三垂线定理知,故是二面角的平面角,

,∴E为的中点,∴,又,由

,在RtCDE中,sin,所以二面角正弦值的大小为   

20.解:(1)因,故可得直线方程为:

(2),用数学归纳法可证.

(3)

所以

21.解:(1)∵ 函数是R上的奇函数    ∴    ∴ ,由的任意性知∵ 函数处有极值,又

是关于的方程的根,即

   ∴  ②(4分)由①、②解

 

(2)由(1)知

列表如下:

 

1

(1,3)

3

 

 

+

0

0

+

 

增函数

极大值1

减函数

极小值

增函数

9

上有最大值9,最小值

∵ 任意的都有,即

的取值范围是

22.(1)

(2)由

           ①

设C,CD中点为M,则有

,又A(0,-1)且

(此时)      ②

将②代入①得,即

综上可得

 

 


同步练习册答案