题目列表(包括答案和解析)
(本小题满分16分)
数列
的前n项和为
,存在常数A,B,C,使得
对任意正整数n都成立。
(1) 若数列
为等差数列,求证:3A-B+C=0;
(2) 若
设
数列
的前n项和为
,求
;
(3) 若C=0,
是首项为1的等差数列,设
,求不超过P的最大整数的值。
(本小题满分14分)
在平面直角坐标系中,已知向量
(
),
,动点
的轨迹为
.
(1)求轨迹
的方程,并说明该方程表示的曲线的形状;
(2)当
时,过点
(0,1),作轨迹T的两条互相垂直的弦
、
,设
、
的中点分别为
、
,试判断直线
是否过定点?并说明理由.
(本小题满分16分)平面直角坐标系xoy中,直线
截以原点O为圆心的圆所得的弦长为![]()
(1)求圆O的方程;
(2)若直线
与圆O切于第一象限,且与坐标轴交于D,E,当DE长最小时,求直线
的方程;
(3)设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由。
(本小题满分14分)
某商场“十.一”期间举行有奖促销活动,顾客只要在商店购物满800元就能得到一次摸奖机会.摸奖规则是:在盒子内预先放有5个相同的球,其中一个球标号是0,两个球标号都是40,还有两个球没有标号。顾客依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个没有标号的球就停止摸球,否则将盒子内球摸完才停止.奖金数为摸出球的标号之和(单位:元),已知某顾客得到一次摸奖机会。
(1)求该顾客摸三次球被停止的概率;
(2)设
(元)为该顾客摸球停止时所得的奖金数,求
的分布列及数学期望
.
(本小题满分10分)
已知集合
,若
,求实数
的值
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com